PROGRAMA DE FÍSICA E QUÍMICA A

10.º e 11.º anos

Curso científico-humanístico de Ciências e Tecnologias

Coordenadores
Carlos Fiolhais (coordenação científica)
Isabel Festas e Helena Damião (coordenação pedagógica)

Autores
Componente de Química
António José Ferreira
Fernanda Braguez
Maria Goreti Matos
Sérgio Rodrigues (coordenador)

Componente de Física
Carlos Fiolhais (coordenador)
Carlos Portela
Graça Ventura
Rogério Nogueira
Índice

1. Introdução .. 3
2. Finalidades e objetivos .. 3
3. Organização dos conteúdos .. 4
4. Orientações gerais .. 5
5. Metas curriculares .. 6
6. Desenvolvimento do Programa ... 6
6.1 Componente de Química ... 7
10.º Ano: Componente de Química ... 8
 Elementos químicos e sua organização ... 8
 • Massa e tamanho dos átomos ... 8
 • Energia dos eletrões nos átomos ... 8
 • Tabela Periódica .. 9
 Propriedades e transformações da matéria .. 10
 • Ligação química .. 10
 • Gases e dispersões ... 11
 • Transformações químicas .. 11
11.º Ano: Componente de Química .. 13
 Equilíbrio químico .. 13
 • Aspetos quantitativos das reações químicas ... 13
 • Equilíbrio químico e extensão das reações químicas ... 13
 Reações em sistemas aquosos ... 14
 • Reações ácido-base .. 14
 • Reações de oxidação-redução ... 15
 • Soluções e equilíbrio de solubilidade ... 16
6.2 Componente de Física .. 18
10.º Ano: Componente de Física ... 19
 Energia e sua conservação ... 19
 • Energia e movimentos ... 19
 • Energia e fenómenos elétricos ... 20
• Energia, fenômenos térmicos e radiação .. 20

11.º Ano: Componente de Física .. 22

Mecânica ... 22

• Tempo, posição e velocidade ... 22

• Interações e seus efeitos ... 22

• Forças e movimentos .. 23

Ondas e eletromagnetismo .. 23

• Sinais e ondas .. 23

• Eletromagnetismo ... 24

• Ondas eletromagnéticas ... 25

6.3 Trabalho prático-laboratorial .. 26

10.º Ano: Componente de Química ... 28

11.º Ano: Componente de Química ... 30

10.º Ano: Componente de Física .. 32

11.º Ano: Componente de Física .. 34

7. Avaliação ... 38

8. Bibliografia .. 38

FORMULÁRIO .. 41

METAS CURRICULARES .. 42

10.º ano – Química .. 43

10.º ano – Física ... 49

11.º ano – Física ... 52

11.º ano – Química .. 59

Componente prática-laboratorial .. 64

Metas transversais a todas as atividades .. 64

Metas específicas e transversais das atividades laboratoriais 66

10.º ano – Química .. 66

10.º ano – Física ... 69

11.º ano – Física ... 73

11.º ano – Química .. 77
1. Introdução

De acordo com a Portaria n.º 243/2012, de 10 de agosto, a disciplina de Física e Química A faz parte da componente específica do Curso científico-humanístico de Ciências e Tecnologias. É uma disciplina bienal (10.º e 11.º ano), dá continuidade à disciplina de Físico-Química (Ciências Físico-Químicas) do Ensino Básico (7.º, 8.º e 9.º anos) e constitui precedência em relação às disciplinas de Física e de Química do 12.º ano.

O Programa desta disciplina está elaborado atendendo a uma carga letiva semanal mínima de 315 minutos, sendo a aula de maior duração dedicada a atividades práticas e laboratoriais. Nesta aula, com a duração máxima de 150 minutos, a turma deve funcionar desdobrada.

Cada uma das componentes, Física e Química, é lecionada em metade do ano letivo, alternando-se a ordem de lecionação nos dois anos – o 10.º ano inicia-se com a componente de Química e o 11.º ano com a componente de Física – de modo a haver uma melhor rendibilização dos recursos, designadamente os referentes à componente laboratorial.

2. Finalidades e objetivos

A disciplina “visa proporcionar formação científica consistente no domínio do respetivo curso” (Portaria n.º 243/2012). Por isso, definem-se como finalidades desta disciplina:

- Proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física e da química, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e investigar, extrair conclusões e tomando decisões, em bases científicas, procurando sempre um maior bem-estar social.

- Promover o reconhecimento da importância da física e da química na compreensão do mundo natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade.

- Contribuir para o aumento do conhecimento científico necessário ao prosseguimento de estudos e para uma escolha fundamentada da área desses estudos.

De modo a atingir estas finalidades, definem-se como objetivos gerais da disciplina:

- Consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e teorias que descrevem, explicam e preveem fenómenos assim como fundamentam aplicações.

- Desenvolver hábitos e capacidades inerentes ao trabalho científico: observação, pesquisa de informação, experimentação, abstração, generalização, previsão, espírito crítico, resolução de problemas e comunicação de ideias e resultados nas formas escrita e oral.

- Desenvolver as capacidades de reconhecer, interpretar e produzir representações variadas da informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas, gráficos, tabelas, equações, modelos e simulações computacionais.

- Destacar o modo como o conhecimento científico é construído, validado e transmitido pela comunidade científica.
3. Organização dos conteúdos

Os conteúdos, em cada ano e em cada componente, estão organizados por domínios e subdomínios que se referem a temas da física e da química, sendo considerados estruturantes para a formação científica e prosseguimento de estudos, permitindo a consolidação, aprofundamento e extensão dos estudos realizados no 3.º ciclo do ensino básico.

O quadro seguinte mostra a organização dos domínios e subdomínios por ano de escolaridade e componente (Física ou Química).

<table>
<thead>
<tr>
<th>10.º ano</th>
<th>11.º ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Química</td>
<td>Física</td>
</tr>
<tr>
<td>Domínios</td>
<td>Domínios</td>
</tr>
<tr>
<td>Elementos químicos e sua organização</td>
<td>Mecânica</td>
</tr>
<tr>
<td>Massa e tamanho dos átomos</td>
<td>Tempo, posição e velocidade</td>
</tr>
<tr>
<td>Energia dos eletrões nos átomos</td>
<td>Interações e seus efeitos</td>
</tr>
<tr>
<td>Tabela Periódica</td>
<td>Forças e movimentos</td>
</tr>
<tr>
<td>Propriedades e transformações da matéria</td>
<td>Ondas e eletromagnetismo</td>
</tr>
<tr>
<td>Ligação química</td>
<td>Sinais e ondas</td>
</tr>
<tr>
<td>Gases e dispersões</td>
<td>Eletromagnetismo</td>
</tr>
<tr>
<td>Transformações químicas</td>
<td>Ondas eletromagnéticas</td>
</tr>
<tr>
<td>Física</td>
<td>Química</td>
</tr>
<tr>
<td>Domínios</td>
<td>Domínios</td>
</tr>
<tr>
<td>Energia e sua conservação</td>
<td>Equilíbrio químico</td>
</tr>
<tr>
<td>Energia e movimentos</td>
<td>Aspetos quantitativos das reações químicas</td>
</tr>
<tr>
<td>Energia e fenómenos elétricos</td>
<td>Equilíbrio químico e extensão das reações químicas</td>
</tr>
<tr>
<td>Energia, fenómenos térmicos e radiação</td>
<td>Reações ácido-base</td>
</tr>
<tr>
<td>Reações em sistemas aquosos</td>
<td>Reações de oxidação-redução</td>
</tr>
<tr>
<td></td>
<td>Soluções e equilíbrio de solubilidade</td>
</tr>
</tbody>
</table>
Os conteúdos foram selecionados procurando manter os aspectos essenciais dos programas anteriores (Física e Química A do 10.º ano, homologado em 2001, e do 11.º ano, homologado em 2003). Pretendeu-se também valorizar os saberes dos professores a respeito dos processos de ensino e de aprendizagem, resultantes de quase uma década de prática na sua aplicação.

A terminologia usada tem por base o Sistema Internacional (SI), cujas condições e normas de utilização em Portugal constam do Decreto-Lei n.º 128/2010, de 3 de dezembro. Outros aspectos de terminologia e definições seguiram recomendações de entidades internacionais, como a União Internacional de Química Pura e Aplicada (IUPAC), ou nacionais, como o Instituto Português da Qualidade (IPQ).

4. Orientações gerais

Os domínios, bem como os subdomínios, são temas da física ou da química. Mas, dado o impacto que os conhecimentos da física e da química e das suas aplicações têm na compreensão do mundo natural e na vida dos seres humanos, sugere-se que a abordagem dos conceitos científicos parta, sempre que possível e adequado, de situações variadas que sejam motivadoras como, por exemplo, casos da vida quotidiana, avanços recentes da ciência e da tecnologia, contextos culturais onde a ciência se insira, episódios da história da ciência e outras situações socialmente relevantes. A escolha desses contextos por parte do professor deve ter em conta as condições particulares de cada turma e escola. Tal opção não só reforçará a motivação dos alunos pela aprendizagem mas também permitirá uma mais fácil concretização de aspetos formais mais abstratos das ciências em causa. Em particular, a invocação de situações da história da ciência permite compreender o modo como ela foi sendo construída.

O desempenho do aluno também deve ser revelado na familiarização com métodos próprios do trabalho científico, incluindo a adoção de atitudes adequadas face às tarefas propostas, devendo a realização de trabalho prático-laboratorial constituir um meio privilegiado para a aquisição desses métodos e desenvolvimento dessas atitudes.

O ensino da Física e Química A deve permitir que os alunos se envolvam em diferentes atividades de sala de aula, incluindo a resolução de exercícios e de problemas, de modo a que desenvolvam a compreensão dos conceitos, leis e teorias, interiorizando processos científicos. Na resolução de problemas os alunos devem também desenvolver as capacidades de interpretação das informações fornecidas, de reflexão sobre elas e de estabelecimento de metodologias adequadas para alcançar boas soluções.

As atividades de demonstração, efetuadas pelo professor, recorrendo a materiais de laboratório ou comuns, com ou sem aquisição automática de dados, constituem uma forte motivação para introduzir certos conteúdos científicos ao mesmo tempo que facilitam a respetiva interpretação. Também o recurso a filmes, animações ou simulações computacionais pode ajudar à compreensão de conceitos, leis e teorias mais abstratas.

Esta disciplina, pela sua própria natureza, recorre frequentemente a conhecimentos e métodos matemáticos. Alguns alunos poderão ter dificuldades na interpretação de relações quantitativas entre grandezas físico-químicas, incluindo a construção de modelos de base matemática na componente laboratorial, ou na resolução de problemas quantitativos por via analítica, devendo o professor desenvolver estratégias que visem a superação das dificuldades detetadas. O recurso a calculadoras gráficas (ou a tablets, ou a laptops) ajudará a ultrapassar
alguns desses constrangimentos, cabendo ao professor, quando necessário, introduzir os procedimentos de boa utilização desses equipamentos.

Os alunos devem ser incentivados a trabalhar em grupo, designadamente na realização das atividades laboratoriais. O trabalho em grupo deve permitir uma efetiva colaboração entre os seus membros, mas, ao mesmo tempo que aumenta o espírito de entreajuda, desenvolver também hábitos de trabalho e a autonomia em cada um deles.

Os alunos devem igualmente ser incentivados a investigar e a refletir, comunicando as suas aprendizagens oralmente e por escrito. Devem, no seu discurso, usar vocabulário científico próprio da disciplina e evidenciar um modo de pensar científico, ou seja, fundamentado em conceitos, leis e teorias científicas.

5. Metas curriculares

Segundo o Despacho n.º 15971/2012, de 14 de dezembro, as metas curriculares “identificam a aprendizagem essencial a realizar pelos alunos ... realçando o que dos programas deve ser objeto primordial de ensino”.

As metas curriculares permitem:
- identificar os desempenhos que traduzem os conhecimentos a adquirir e as capacidades que se querem ver desenvolvidas no final de um dado módulo de ensino;
- fornecer o referencial para a avaliação interna e externa, em particular para as provas dos exames nacionais;
- orientar a ação do professor na planificação do seu ensino e na produção de materiais didáticos;
- facilitar o processo de autoavaliação pelo aluno.

As metas curriculares constituem uma secção final deste documento, intitulado “Metas curriculares – Física e Química A”.

Apresentam-se os objetivos gerais pormenorizados por descritores, organizados por ano de escolaridade e por domínios e subdomínios, em cada componente, de acordo com a seguinte estrutura:

- Domínio

 Subdomínio
 Objetivo geral
 1. Descritor
 2. Descritor

Destacam-se os objetivos gerais e descritores referentes ao trabalho prático-laboratorial, quer transversais quer específicos de cada atividade laboratorial.

6. Desenvolvimento do Programa

Apresentam-se, para cada componente – Química e Física –, a sequência dos conteúdos e o seu enquadramento, incluindo as atividades prático-laboratoriais, por domínio e subdomínio e por ano de escolaridade, os respetivos objetivos gerais, algumas orientações e sugestões, e uma previsão do número de aulas por subdomínio. Consideram-se, para essa previsão, três aulas semanais. O número de aulas previsto é indicativo e deve ser gerido pelo professor de acordo com as características das suas turmas.
6.1 Componente de Química

O 10.º ano desenvolve-se através de ideias organizadoras que vão das propriedades do átomo à reatividade molecular, passando por aspetos quantitativos das propriedades dos gases e dispersões. O 11.º ano centra-se no equilíbrio químico e em aspetos quantitativos e qualitativos das reações químicas, sendo estudadas em particular reações ácido-base, de oxidação-redução e de solubilidade. A seleção dos conteúdos fundamenta-se nas seguintes ideias organizadoras:

1. a matéria comum é constituída por átomos;
2. as propriedades dos átomos são determinadas pelo modo como se distribuem os eletrões e pelas respectivas energias;
3. os elementos químicos estão organizados na Tabela Periódica, baseada nas propriedades dos átomos;
4. os átomos podem unir-se para formar moléculas e outras estruturas maiores através de ligações químicas envolvendo essencialmente os eletrões de valência;
5. as propriedades dos materiais são determinadas pelo tipo de átomos, pelas ligações químicas e pela geometria das moléculas;
6. a estabilidade relativa, do ponto de vista energético, dos átomos e moléculas influencia a sua reatividade;
7. existe um número reduzido de tipos de reações químicas, sendo a este nível considerados três: (a) transferência de protão (ácido-base), (b) transferência de eletrões (oxidação-redução) e (c) deslocamento de íon (precipitação, solubilização e complexação);
8. nas reações químicas a massa e a energia conservam-se e os reagentes e produtos, num sistema fechado, tendem para o equilíbrio.

Como o grau de abstração necessário para compreender conceitos como o de orbital atómica é elevado, reduziu-se esta temática ao mímimo necessário para chegar às configurações eletrónicas dos átomos, em especial das suas camadas de valência. As ligações intermoleculares são introduzidas dada a sua importância para a compreensão das propriedades dos materiais. Relativamente à forma das moléculas (geometria e estrutura tridimensional) os alunos devem começar a interpretar e a distinguir estruturas tridimensionais identificando grupos funcionais. Mais importante do que o domínio da nomenclatura da química orgânica é a capacidade de distinguir estruturas de moléculas e de lhes atribuir um significado químico.

A enorme utilidade da química no mundo atual aponta para um futuro sustentável em áreas vitais para a sociedade (energia, recursos naturais, saúde, alimentação, novos materiais, entre outros) através de avanços significativos na síntese química, na química analítica, na química computacional, na química biológica e na tecnologia química. Estes aspetos devem, por isso, ser valorizados, procurando-se que os alunos reconheçam algumas aplicações e outros resultados de investigação que tenham impacto na sociedade e no ambiente.

Apresentam-se a sequência de conteúdos dos 10.º e 11.º anos, os objetivos gerais, algumas orientações e sugestões, e uma previsão da distribuição por tempos letivos. As atividades laboratoriais (designadas por AL) aparecem identificadas nos respetivos subdomínios.
Elementos químicos e sua organização

- **Massa e tamanho dos átomos**
 (5 aulas)

Objetivo geral
Consolidar e ampliar conhecimentos sobre elementos químicos e dimensões à escala atómica.

Conteúdos
- Ordens de grandeza e escalas de comprimento
- Dimensões à escala atómica
- Massa isotópica e massa atómica relativa média
- Quantidade de matéria e massa molar
- Fração molar e fração mássica

Orientações e sugestões
Como indício experimental da existência de átomos sugere-se a observação de movimentos brownianos. A grande diferença de densidades entre as fases condensadas e gasosa de um material pode também propiciar uma reflexão sobre a existência de átomos e as suas dimensões. Estas abordagens permitem uma contextualização histórica do assunto, que vai de Brown a Einstein, passando por Avogadro e Loschmidt.

Para avaliar as dimensões à escala atómica podem analisar-se imagens de microscopia de alta resolução às quais estejam associadas escalas ou fatores de ampliação. Pode-se também recorrer a informação sobre a presença de nanopartículas em situações comuns e sobre aplicações que resultem da manipulação da matéria à escala atómica. A análise das vantagens e riscos da nanotecnologia possibilita a reflexão sobre as relações entre ciência e sociedade.

- **Energia dos eletrões nos átomos**
 (8 aulas)

Objetivo geral
Reconhecer que a energia dos eletrões nos átomos pode ser alterada por absorção ou emissão de energias bem definidas, correspondendo a cada elemento um espetro atómico característico, e que os eletrões nos átomos se podem considerar distribuídos por níveis e subníveis de energia.

Conteúdos
- Espetros contínuos e descontínuos
- O modelo atómico de Bohr
- Transições eletrónicas
- Quantização de energia
- Espetro do átomo de hidrogénio
- Energia de remoção eletrónica
- Modelo quântico do átomo
 - níveis e subníveis
 - orbitais (s, p e d)
 - spin

- Configuração eletrónica de átomos
 - Princípio da Construção (ou de Aufbau)
 - Princípio da Exclusão de Pauli

- **AL 1.2. Teste de chama**

Orientações e sugestões

Recomenda-se a observação de espetros contínuos e descontínuos decompondo a luz com redes de difração ou espetroscópios e a visualização de simulações sobre espetroscopia. Sugere-se ainda o uso de tubos de Pluecker para visualizar espetros descontínuos.

Deve recorrer-se a dados da espetroscopia fotoelétrica (sem exploração nem da técnica nem dos equipamentos) para estabelecer a ordem das energias no estado fundamental de orbitais atómicos até 4s. Este assunto deve ser abordado sem recurso aos números quânticos.

O Princípio da Exclusão de Pauli deve ser apresentado de uma forma simplificada, devendo fazer-se a distribuição eletrónica pelas orbitais degeneradas.

As energias relativas dos subníveis eletrónicos ocupados, assim como os números relativos de eletrões em cada subnível, podem ser determinados a partir de espetros obtidos por espetroscopia fotoelétrica de baixa resolução, enquanto o número máximo de eletrões permitido por orbital é dado pelo Princípio da Exclusão de Pauli. A degenerescência das orbitais p e d do mesmo nível pode assim ser confirmada a partir destes resultados.

As configurações eletrónicas devem ser estabelecidas com base na regra da construção (conhecida por Princípio de Construção ou de Aufbau) e atendendo à maximização do número de eletrões desemparelhados (conhecida como regra de Hund).

- **Tabela Periódica**
 - (4 aulas)

Objetivo geral

Reconhecer na Tabela Periódica um meio organizador de informação sobre os elementos químicos e respetivas substâncias elementares e compreender que a estrutura eletrónica dos átomos determina as propriedades dos elementos.

Conteúdos

- Evolução histórica da Tabela Periódica
- Estrutura da Tabela Periódica: grupos, períodos e blocos
- Elementos representativos e de transição
- Famílias de metais e de não-metais
- Propriedades periódicas dos elementos representativos
 - raio atómico
 - energia de ionização
- **AL 1.3. Densidade relativa de metais**

Orientações e sugestões

Devem relembrar-se os principais contributos para a evolução da Tabela Periódica (de Döbereiner a Moseley, passando por Mendeleev, e avançando até à atualidade), podendo realçar-se a
fundamentação e discussão das propostas que foram surgindo e o facto de a Tabela Periódica ser um documento aberto à incorporação de novos elementos químicos e de novos conhecimentos. Essa abordagem permite mostrar o modo como a ciência evolui.

A diversidade de materiais existentes na Natureza mostra que a maioria dos elementos químicos se encontra na forma combinada (formando substâncias elementares ou compostas) e que um número relativamente pequeno de elementos está na origem de milhões de substâncias naturais e artificiais.

Propriedades e transformações da matéria

- **Ligações químicas**

 (10 aulas)

Objetivo geral

Compreender que as propriedades das moléculas e materiais são determinadas pelo tipo de átomos, pela energia das ligações e pela geometria das moléculas.

Conteúdos

- Tipos de ligações químicas
- Ligação covalente
 - estruturas de Lewis
 - energia de ligação e comprimento de ligação
 - polaridade das ligações
 - geometria molecular
 - polaridade das moléculas
 - estruturas de moléculas orgânicas e biológicas
- Ligações intermoleculares
 - ligações de hidrogénio
 - ligações de van der Waals (de London, entre moléculas polares e entre moléculas polares e apolares)
- AL 2.1. Miscibilidade de líquidos

Orientações e sugestões

A ligação química deve ser considerada um conceito unificador: a energia de um conjunto de átomos ou moléculas ligados é menor do que a energia dos átomos ou moléculas separados, como resultado das atrações e repulsões envolvendo eletrões e núcleos atómicos. Devem ser estudadas duas situações quanto ao tipo de ligação química: (a) partilha significativa de eletrões entre os átomos (ligações iônica, covalente e metálica) e (b) partilha pouco significativa de eletrões entre os átomos ou moléculas (ligações intermoleculares de van der Waals e ligações de hidrogénio).

A identificação da partilha de eletrões pode ser relacionada qualitativamente com representações da densidade eletrónica das moléculas.

A ligação iônica deve ser apresentada como uma ligação em que a partilha de eletrões dá origem a uma cedência significativa de eletrões entre átomos, podendo realçar-se que essas estruturas com carácter iónico se dissociam em íons em solução ou por mudança de estado físico.

A polaridade das moléculas deve ser abordada sem recorrer ao conceito de momento dipolar. Pode destacar-se que a assimetria na distribuição da carga elétrica se traduz na polaridade da molécula, por exemplo, a partir de representações das densidades eletrónicas de moléculas. Mais importante do que a identificação dos vários tipos de forças de van der Waals será a aquisição pelos alunos da noção de que,
para qualquer tipo de molécula, incluindo as moléculas não polares e os átomos de gases nobres, existe atração entre estas por forças de London e que, em moléculas polares, estas atrações se somam às atrações entre as distribuições assimétricas de carga. Suger-se a aplicação dos conhecimentos sobre ligação química e geometria molecular na análise e interpretação de estruturas moleculares de substâncias presentes nos alimentos, em medicamentos, entre outros, sem exploração da nomenclatura correspondente a essas moléculas. A relação entre as miscibilidades e o tipo de ligações intermoleculares deve ser apresentada como uma relação genérica cuja explicação é complexa, por depender de múltiplos fatores, não sendo necessário fornecer essa explicação aos alunos.

Gases e dispersões

(8 aulas)

Objetivo geral

Reconhecer que muitos materiais se apresentam na forma de dispersões que podem ser caracterizadas quanto à sua composição.

Conteúdos

- Lei de Avogadro, volume molar e massa volúmica
- Soluções, coloides e suspensões
- Composição quantitativa de soluções
 - concentração em massa
 - concentração
 - percentagem em volume e percentagem em massa
 - partes por milhão
- Diluição de soluções aquosas
- AL 2.2. Soluções a partir de solutos sólidos
- AL 2.3. Diluição de soluções

Orientações e sugestões

A abordagem destes conteúdos pode partir da descrição da atmosfera da Terra, no que respeita à presença de gases, com realce para a composição quantitativa média da troposfera, para análises químicas da qualidade do ar e o aumento do efeito de estufa. Outros contextos igualmente pertinentes, por estarem relacionados com o quotidiano e a sociedade, em particular com a informação e a defesa do consumidor, podem ser encontrados nas indústrias farmacêutica, alimentar e de cosméticos, na saúde e qualidade da água, entre outros. A análise, por exemplo, de bulas de medicamentos, de rótulos e de relatórios de análises pode contribuir para motivar os alunos e sensibilizá-los para a importância da interpretação de informação química necessária ao esclarecimento dos consumidores.

Transformações químicas

(5 aulas)

Objetivo geral

Compreender os fundamentos das reações químicas, incluindo reações fotoquímicas, do ponto de vista energético e da ligação química.
Conteúdos

- Energia de ligação e reações químicas
 - processos endoenergéticos e exoenergéticos
 - variação de entalpia

- Reações fotoquímicas na atmosfera
 - fotodissociação e fotoionização
 - radicais livres e estabilidade das espécies químicas
 - ozono estratosférico

- AL 2.4. Reação fotoquímica

Orientações e sugestões

A escrita de equações químicas usando fórmulas de estrutura pode ajudar a compreender o que se passa na ruptura e formação de ligações durante as reações químicas.

Os exemplos a considerar devem incluir substâncias estudadas no subdomínio “Ligação Química”, podendo ser introduzidas reações como a combustão de alcanos, a síntese do amoníaco e a decomposição da água.

O caso particular do ozono, que na troposfera atua como poluente enquanto na estratosfera atua como protetor, pode ser explorado nos aspectos científico, tecnológico, social e ambiental. A formação e destruição do ozono estratosférico podem ser abordadas através da questão da camada de ozono. Podem discutir-se as vantagens e desvantagens proporcionadas pelos clorofluorocarbonetos (CFC), assim como dos seus substitutos, com base em informação selecionada.

Também podem ser utilizadas as aplicações da fotoquímica em diferentes áreas como, por exemplo, a medicina, a arte e a produção de energia.
11.º Ano: Componente de Química

Equilíbrio químico

• **Aspetos quantitativos das reações químicas**
 (7 aulas)

Objetivo geral
Compreender as relações quantitativas nas reações químicas e aplicá-las na determinação da eficiência dessas reações.

Conteúdos
- Reações químicas
 - equações químicas
 - relações estequiométricas
- Reagente limitante e reagente em excesso
- Grau de pureza de uma amostra
- Rendimento de uma reação química
- Economia atómica e química verde
- AL 1.1. Síntese do ácido acetilsalicílico

Orientações e sugestões
Os aspetos quantitativos de algumas reações de síntese química historicamente relevantes podem ser um contexto para a introdução destes conteúdos (por exemplo, síntese da ureia realizada por Wöhler, descoberta da mauveína por Perkin, síntese de pigmentos sintéticos, da aspirina e de outros medicamentos).
Os aspetos quantitativos das reações podem ser abordados, por exemplo, partindo da indústria química (avaliação da qualidade das matérias-primas, previsões sobre a produção industrial, etc.) e da química ambiental (emissões de poluentes, tratamento de efluentes, etc.).
No acerto de equações químicas pretende-se ampliar aprendizagens do 3.º ciclo, podendo incluir-se equações na forma iónica que também impliquem acerto de carga, mas os aspetos que envolvem referência ao processo de oxidação-redução devem ser apresentados no subdomínio respectivo.
A economia atómica deve surgir no contexto da “química verde” para realçar que, no caso das reações químicas, é possível introduzir modificações que visam economizar energia e/ou átomos e aumentar o rendimento e a seletividade de um dado processo. Estes aspetos podem ser debatidos com os alunos do ponto de vista da sustentabilidade.
Sugere-se a escrita de equações químicas usando estruturas de Lewis, realçando o carácter molecular das reações.

• **Equilíbrio químico e extensão das reações químicas**
 (8 aulas)

Objetivo geral
Reconhecer a ocorrência de reações químicas incompletas e de equilíbrio químico e usar o Princípio de Le Châtelier para prever a evolução de sistemas químicos.

Conteúdos
- Reações incompletas e equilíbrio químico
Orientações e sugestões

Os sistemas a estudar neste subdomínio devem ser homogéneos, gasosos ou aquosos. No que respeita aos aspectos quantitativos do equilíbrio químico, devem excluir-se casos em que apenas se apresentam dados relativos à composição inicial do sistema.

As simulações computacionais podem ser uma ferramenta útil para visualizar a natureza dinâmica do equilíbrio químico, por proporcionarem representações gráficas da evolução das concentrações de reagentes e de produtos ao longo do tempo. Estas simulações também ajudarão os alunos a reconhecer que um sistema químico pode ter, à mesma temperatura, uma infinidade de estados de equilíbrio com a mesma constante de equilíbrio.

Deve realçar-se que a constante de equilíbrio assume sempre um valor finito (não sendo nula nem infinita, embora possa ter um valor muito baixo ou muito elevado). Simulações computacionais podem também ajudar a compreender a evolução dos sistemas químicos resultante de perturbações ao equilíbrio químico, com a vantagem de se poder explorar o que acontece microscopicamente nestes casos, reforçando a ideia da natureza dinâmica do equilíbrio químico.

Reações em sistemas aquosos

- **Reações ácido-base**
 (10 aulas)

Objetivo geral

Aplicar a teoria protónica (de Brönsted e Lowry) para reconhecer substâncias que podem atuar como ácidos ou bases e determinar o pH das suas soluções aquosas.

Conteúdos

- Ácidos e bases
 - evolução histórica
 - ácidos e bases segundo Brönsted e Lowry
- Acidez e basicidade de soluções
 - escala de Sorensen
 - pH e concentração hidrogeniónica
- Autoionização da água
 - produto iónico da água
 - relação entre as concentrações de H$_3$O$^+$ e de OH$^-$
 - efeito da temperatura na autoionização da água
- Ácidos e bases em soluções aquosas
 - ionização de ácidos e de bases em água
 - pares conjugados ácido-base
orientações e sugestões

podem usar-se contextos que ilustrem o contributo da química para a resolução de problemas ambientais como, por exemplo, nos setores industrial, energético, agrícola e de transportes, entre outros, envolvendo o tratamento de resíduos e a qualidade do ar e da água.
deve destacar-se o conceito de ácido e de base segundo brönsted e lowry, referindo-se historicamente a teoria de arrhenius, mostrando o papel das teorias na construção do conhecimento científico.
as constantes de equilíbrio de ácidos fortes não devem ser consideradas infinitas, mas sim muito grandes.
as reações de neutralização devem ser interpretadas com base na reação entre os íons h₃o⁺ e oh⁻, identificando o papel central desta reação mesmo nos casos em que aparentemente não aparece explicitamente nas equações químicas.
não é necessário explicitar critérios de seleção de indicadores para as titulações ácido-base.
a determinação de concentrações de equilíbrio das espécies químicas envolvidas na ionização de ácidos monoprotícios fracos (ou de bases) a partir do ph, constante de acidez (ou de basicidade) e estequiometria da reação deve apenas ser realizada quando se possa despregar a contribuição da autoionização da água.

reações de oxidação-redução
(5 aulas)

objetivo geral
reconhecer as reações de oxidação-redução como reações de transferência de eletrões e interpretar a ação de ácidos sobre alguns metais como um processo de oxidação-redução.

conteúdos

• caracterização das reações de oxidação-redução
 o conceitos de oxidação e redução
 o espécie oxidada e espécie reduzida
 o oxidante e redutor
 o número de oxidação
 o semirreações de oxidação e de redução
• força relativa de oxidantes e redutores
• reação ácido-metal
• poder redutor e poder oxidante
• série eletroquímica

AL 2.3. Série eletroquímica

Orientações e sugestões
A abordagem da oxidação e redução poderá incluir aspetos históricos da evolução destes conceitos. Como aplicações sugerem-se, por exemplo, a corrosão de metais, a queima de combustíveis, baterias usadas em carros, computadores ou telemóveis. Devem revisitar-se exemplos já estudados nos subdomínios anteriores (por exemplo, síntese do amoniaco, formação de poluentes na atmosfera, etc.), que podem agora ser interpretados como reações de oxidação-redução.

A escrita de equações de oxidação redução não deve envolver o acerto em meio ácido ou em meio básico.

• Soluções e equilíbrio de solubilidade

(9 aulas)

Objetivo geral
Compreender a dissolução de sais e reconhecer que a mineralização das águas se relaciona com processos de dissolução e equilíbrios de solubilidade.

Conteúdos

- Mineralização das águas e processo de dissolução
 - dissolução de sais e gases na água do mar
 - processo de dissolução e interação soluto-solvente
 - fatores que afetam o tempo de dissolução
- Solubilidade de sais em água
 - solubilidade
 - efeito da temperatura na solubilidade
 - solução não saturada, saturada e sobressaturada
- Equilíbrio químico e solubilidade de sais
 - constante do produto de solubilidade
 - solubilidade e produto de solubilidade
- Alteração da solubilidade dos sais
 - efeito do íon comum
 - efeito da adição de soluções ácidas
 - formação de íons complexos
- Desmineralização de águas e processo de precipitação
 - correção da dureza da água
 - remoção de poluentes
- AL 2.4. Temperatura e solubilidade de um soluto sólido em água

Orientações e sugestões
As características das águas (naturais ou tratadas), enquanto soluções aquosas, devem ser o ponto de partida para o desenvolvimento dos conteúdos relacionados com a solubilidade de sais. Também podem referir-se processos de obtenção de sais a partir de soluções aquosas por evaporação do solvente, por
exemplo, o sal marinho produzido de forma tradicional.
Pode ser referida a utilização de sais de iões tóxicos muito pouco solúveis tanto em medicina (caso do sulfato de bário) como em engenharia (caso dos pigmentos de chumbo e crómio), assim como o desenvolvimento de formulações farmacêuticas que aumentem a solubilização de medicamentos na forma de sais ou de complexos e a relação entre solubilidade e a sua biodisponibilidade.
A aplicação de aprendizagens anteriores, como as relacionadas com ligações intermoleculares, ácido-base ou Princípio de Le Châtelier, permite valorizar uma visão integrada dos vários conteúdos em estudo. Neste âmbito, pode salientar-se que os processos de solubilização e precipitação de sais não envolvem alterações significativas da estrutura eletrônica das espécies químicas envolvidas.
6.2 Componente de Física

A componente de Física contempla três domínios: “Energia e sua conservação” (10.º ano), “Mecânica” e “Ondas e eletromagnetismo” (11.º ano).

No 10.º ano existe um só domínio, uma vez que os conceitos chave se referem à energia e à sua conservação, abordando as suas manifestações em sistemas mecânicos, elétricos e termodinâmicos. No estudo dos sistemas mecânicos aborda-se, de um modo não formal, o conceito de centro de massa, limitando o estudo a sistemas redutíveis a uma partícula (centro de massa). Este subdomínio introduz conceitos necessários ao estudo de sistemas mecânicos, cujo aprofundamento se fará no 11.º ano, e constitui pré-requisito para a abordagem de subdomínios posteriores. O estudo de sistemas elétricos permite consolidar aprendizagens anteriores e é um pré-requisito para trabalhos laboratoriais posteriores e para o estudo da indução eletromagnética no 11.º ano. O estudo de sistemas termodinâmicos permite alargar conhecimentos, estabelecendo a ligação com o subdomínio anterior através do conceito de radiação e do seu aproveitamento para a produção de corrente elétrica.

No 11.º ano, no domínio “Mecânica”, faz-se o estudo de movimentos e das interações que os originam, considerando-se apenas sistemas mecânicos redutíveis ao seu centro de massa. Neste domínio deverão integrar-se as considerações energéticas já abordadas no 10.º ano. No domínio “Ondas e eletromagnetismo” aborda-se a produção e a propagação de ondas mecânicas, destacando-se a sua periodicidade temporal e espacial e um modelo matemático que interpreta as vibrações sinusoidais da fonte que as produz, dando-se particular relevo às ondas sonoras; introduzem-se a origem e a caracterização de campos elétricos e magnéticos, enfatizando a indução eletromagnética e a sua aplicação na produção industrial de corrente elétrica; finalmente explora-se a produção e a propagação de ondas eletromagnéticas, apoiada nos modelos ondulatório e geométrico, destacando-se a sua importância na compreensão de fenômenos naturais e a sua aplicação e utilização na nossa sociedade.

A vida moderna está repleta de aplicações da física: construções, máquinas, veículos, comunicações, etc. O enquadramento dos conteúdos da disciplina com essas aplicações ajudará a uma melhor compreensão quer dos conteúdos da disciplina quer das próprias aplicações, e consolidará a visão da física como portadora de benefícios sociais, ao mesmo tempo que reforçará o interesse do aluno. As referências a aplicações da física, para além de poderem ser um meio de consolidação de conhecimentos, podem e devem ser usadas como ponto de partida e motivação para a abordagem aos conteúdos.

Apresentam-se a sequência de conteúdos dos 10.º e 11.º anos, os objetivos gerais, algumas orientações e sugestões e uma previsão da distribuição por tempos letivos. As atividades laboratoriais (designadas por AL) surgem identificadas nos respetivos subdomínios.
Energia e sua conservação

- **Energia e movimentos**
 (15 aulas)

Objetivo geral

Compreender em que condições um sistema pode ser representado pelo seu centro de massa e que a sua energia como um todo resulta do seu movimento (energia cinética) e da interação com outros sistemas (energia potencial); interpretar as transferências de energia como trabalho em sistemas mecânicos, os conceitos de força conservativa e de força não conservativa e a relação entre trabalho e variações de energia, reconhecendo situações em que há conservação de energia mecânica.

Conteúdos

- Energia cinética e energia potencial; energia interna
- Sistema mecânico; sistema reduzível a uma partícula (centro de massa)
- O trabalho como medida da energia transferida por ação de forças; trabalho realizado por forças constantes
- Teorema da Energia Cinética
- Forças conservativas e não conservativas; o peso como força conservativa; trabalho realizado pelo peso e variação da energia potencial gravítica
- Energia mecânica e conservação da energia mecânica
- Forças não conservativas e variação da energia mecânica
- Potência
- Conservação de energia, dissipação de energia e rendimento
- AL 1.1. Movimento num plano inclinado: variação da energia cinética e distância percorrida
- AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia

Orientações e sugestões

Num sistema mecânico apenas com movimento de translação o aluno deve indicar, sem justificar, que ele se pode reduzir ao estudo de uma partícula, com a massa do sistema, a que se dá o nome de centro de massa. Não se pretende uma definição formal de centro de massa.

Devem ser abordadas apenas situações em que o peso de um corpo possa ser considerado constante, isto é, as dimensões da região em que o corpo se move devem ser muito menores do que o raio da Terra.

Os contextos podem incluir situações que envolvam meios de transporte e movimentos de corpos (por exemplo, corpos no ar com força de resistência do ar desprezável e não desprezável, corpos apoiados em superfícies horizontais ou inclinadas, corpos em calhas curvilíneas ou em montanhas-russas, elevadores, pêndulo gravítico simples, etc.).
Energia e fenômenos elétricos
(9 aulas)

Objetivo geral
Descrever circuitos elétricos a partir de grandezas elétricas; compreender a função de um gerador e as suas características e aplicar a conservação da energia num circuito elétrico tendo em conta o efeito Joule.

Conteúdos
- Grandezas elétricas: corrente elétrica, diferença de potencial elétrico e resistência elétrica
- Corrente contínua e corrente alternada
- Resistência de condutores filiformes; resistividade e variação da resistividade com a temperatura
- Efeito Joule
- Geradores de corrente contínua: força eletromotriz e resistência interna; curva característica
- Associações em série e em paralelo: diferença de potencial elétrico e corrente elétrica
- Conservação da energia em circuitos elétricos; potência elétrica
- AL 2.1. Características de uma pilha

Orientações e sugestões
Os significados das grandezas corrente elétrica, em regime estacionário, e de diferença de potencial elétrico (tensão elétrica), abordados no ensino básico, devem ser revisitados interpretando as respectivas expressões matemáticas sem, contudo, estas constituírem objeto de resolução de exercícios.
A dependência da resistividade dos materiais com a temperatura deve ser analisada sem recorrer a quaisquer expressões ou modelos teóricos, privilegiando a interpretação de informação (em texto, tabelas ou gráficos) e as aplicações dessa dependência.
A abordagem das associações de resistências em série ou em paralelo, limitada ao máximo de três resistências, deve focar-se na análise e interpretação das diferenças de potencial elétrico e das correntes elétricas, sem se proceder ao cálculo de resistências equivalentes.
Como a energia elétrica e as suas diversas aplicações são vitais na sociedade atual, na abordagem dos conceitos pode recorrer-se a contextos como, por exemplo, os da iluminação, aquecimento, alimentação de dispositivos elétricos móveis ou medição de temperaturas.

Energia, fenómenos térmicos e radiação
(15 aulas)

Objetivo geral
Compreender os processos e mecanismos de transferências de energia entre sistemas termodinâmicos, interpretando-os com base na Primeira e na Segunda Leis da Termodinâmica.

Conteúdos
- Sistema, fronteira e vizinhança; sistema isolado; sistema termodinâmico
- Temperatura, equilíbrio térmico e escalas de temperatura
- O calor como medida da energia transferida espontaneamente entre sistemas a diferentes temperaturas
- Radiação e irradiância
• Mecanismos de transferência de energia por calor em sólidos e fluidos: condução e convecção
• Condução térmica e condutividade térmica
• Capacidade térmica mássica
• Variação de entalpia de fusão e de vaporização
• Primeira Lei da Termodinâmica: transferências de energia e conservação da energia
• Segunda Lei da Termodinâmica: degradação da energia e rendimento
• AL 3.1. Radiação e potência elétrica de um painel fotovoltaico
• AL 3.2. Capacidade térmica mássica
• AL 3.3. Balanço energético num sistema termodinâmico

Orientações e sugestões

Na apresentação das experiências de Benjamin Thompson e de Joule deve mostrar-se como é que se reconheceu e comprovou que o calor era energia, apontando as razões que levaram Thompson a concluir que calor não poderia ser uma substância (o calórico), mas sim uma energia. Na experiência de Joule interpretar o aumento de energia interna como resultado do trabalho realizado sobre o sistema e concluir que esse aumento de energia interna poderia ser obtido por absorção de energia por calor.

Para exemplificar o aumento da energia interna por realização de trabalho pode usar-se um tubo de cartão, com esferas de chumbo no seu interior e as extremidades tapadas com rolhas de cortiça, que será invertido repetidamente na vertical; as medidas da massa das esferas, da altura do tubo e das temperaturas das esferas, antes e após um certo número de inversões, permitirão calcular o trabalho do peso e a variação de energia interna.

Na abordagem da Segunda Lei da Termodinâmica deve recorrer-se a exemplos que mostrem que as máquinas funcionam sempre com dissipação de energia, não utilizando toda a energia disponível na realização de trabalho. Deve destacar-se também que ocorre diminuição da energia útil nos mais diversos processos naturais e que este é o critério que determina o sentido em que evoluem esses processos. Não se deve introduzir o conceito de entropia na formulação da Segunda Lei da Termodinâmica.
Mecânica

• **Tempo, posição e velocidade**
 (5 aulas)

Objetivo geral
Compreender diferentes descrições do movimento usando grandezas cinemáticas.

Conteúdos
- Referencial e posição: coordenadas cartesianas em movimentos retilíneos
- Distância percorrida sobre a trajetória, deslocamento, gráficos posição-tempo
- Rapidez média, velocidade média, velocidade e gráficos posição-tempo
- Gráficos velocidade-tempo; deslocamento, distância percorrida e gráficos velocidade-tempo

Orientações e sugestões
Recomenda-se a obtenção de dados (posição e tempo) de movimento reais e a análise de gráficos desses movimentos, em tempo real, por aquisição automática de dados. Também se sugere a análise de movimentos retilíneos de alunos em frente a sensores de movimento ligados a sistemas de aquisição e tratamento de dados.

• **Interações e seus efeitos**
 (9 aulas)

Objetivo geral
Compreender a ação das forças, prever os seus efeitos usando as leis de Newton da dinâmica e aplicar essas leis na descrição e interpretação de movimentos.

Conteúdos
- As quatro interações fundamentais
- Pares ação-reação e Terceira Lei de Newton
- Interação gravítica e Lei da Gravitação Universal
- Efeitos das forças sobre a velocidade
- Aceleração média, aceleração e gráficos velocidade-tempo
- Segunda Lei de Newton
- Primeira Lei de Newton
- O movimento segundo Aristóteles, Galileu e Newton
 - AL 1.1. Queda livre: força gravítica e aceleração da gravidade
 - AL 1.2. Forças nos movimentos retilíneos acelerado e uniforme

Orientações e sugestões
A resolução de problemas deve incorporar os conteúdos introduzidos no 10.º ano sobre aspetos energéticos dos movimentos.
Podem utilizar-se demonstrações (ou experiências filmadas) que possibilitem a observação da interação entre dois sistemas físicos e evidenciem a Terceira Lei de Newton (ação do êmbolo com mola entre dois carrinhos, carrinhos com ímanes que interagem), assim como a observação do que sucede a um sistema
quando a resultante das forças que nele atuam se anula (Primeira Lei de Newton).

- **Forças e movimentos**
 (6 aulas)

Objetivo geral
Caracterizar movimentos retílineos (uniformes, uniformemente variados e variados, designadamente os retílineos de queda à superfície da Terra com resistência do ar desprezável ou apreciável) e movimentos circulares uniformes, reconhecendo que só é possível descrevê-los tendo em conta a resultante das forças e as condições iniciais.

Conteúdos
- Características do movimento de um corpo de acordo com a resultante das forças e as condições iniciais do movimento:
 - queda e lançamento na vertical com efeito de resistência do ar desprezável – movimento retílineo uniformemente variado
 - queda na vertical com efeito de resistência do ar apreciável – movimentos retílineos acelerado e uniforme (velocidade terminal)
 - movimento retílineo uniforme e uniformemente variado em planos horizontais e planos inclinados
 - movimento circular uniforme – periodicidade (período e frequência), forças, velocidade, velocidade angular e aceleração
- AL 1.3. Movimento uniformemente retardado: velocidade e deslocamento

Orientações e sugestões
Recomenda-se a obtenção e análise de gráficos de movimentos, em tempo real, por aquisição automática de dados, como ponto de partida para caracterizar os movimentos abordados. Os alunos devem reconhecer a caracterização de um certo movimento pela força resultante e pelas condições iniciais. Assim, no estudo dos movimentos, deve ser destacada a relação entre a resultante das forças, a velocidade inicial e a taxa de variação temporal da velocidade. Podem ainda a utilizar-se simulações de movimentos e a análise de vídeos de movimentos retílineos com recurso a tratamento de dados, usando software adequado. Na apresentação do movimento circular uniforme deve ser utilizado, com as necessárias aproximações, o contexto dos satélites da Terra: a Lua, o nosso satélite natural, e os numerosos satélites artificiais orbitando a diferentes altitudes.

Ondas e eletromagnetismo

- **Sinais e ondas**
 (7 aulas)

Objetivo geral
Interpretar um fenómeno ondulatorio como a propagação de uma perturbação, com uma certa velocidade; interpretar a periodicidade temporal e espacial de ondas periódicas harmónicas e complexas, aplicando esse conhecimento ao estudo do som.
Conteúdos

- Sinais, propagação de sinais (ondas) e velocidade de propagação
- Ondas transversais e ondas longitudinais
- Ondas mecânicas e ondas eletromagnéticas
- Periodicidade temporal (período) e periodicidade espacial (comprimento de onda)
- Ondas harmônicas e ondas complexas
- O som como onda de pressão; sons puros, intensidade e frequência; sons complexos
- AL 2.1. Características do som
- AL 2.2. Velocidade de propagação do som

Orientações e sugestões

Os alunos já têm a noção de periodicidade temporal das ondas, devendo adquirir a noção de periodicidade espacial, distinguindo-as; aconselha-se a visualização de movimentos oscilatórios e ondulatórios reais e de simulações computacionais.

Deve ter-se em atenção que a intensidade de um som depende apenas da amplitude de pressão da onda sonora e não da sua frequência. No estudo das ondas complexas deve ser utilizado o contexto dos instrumentos musicais e/ou da voz humana.

A compreensão dos fenômenos ondulatórios, em particular do som, pode ser favorecida recorrendo a múltiplas representações, devidamente articuladas, desses fenômenos. Por isso, no estudo das ondas sonoras recomenda-se a utilização de software de adição de sinais que permita a visualização da sua representação gráfica ao mesmo tempo que há produção e audição de som.

Eletromagnetismo

(5 aulas)

Objetivo geral

Identificar as origens de campos elétricos e magnéticos, caracterizando-os através de linhas de campo; reconhecer as condições para a produção de correntes induzidas, interpretando a produção industrial de corrente alternada e as condições de transporte da energia elétrica; identificar marcos importantes na história do eletromagnetismo.

Conteúdos

- Carga elétrica e sua conservação
- Campo elétrico criado por uma carga pontual, sistema de duas cargas pontuais e condensador plano; linhas de campo; força elétrica sobre uma carga pontual
- Campo magnético criado por ímanes e correntes elétricas (retilínea, espira circular e num solenoide); linhas de campo
- Fluxo do campo magnético, indução eletromagnética e força eletromotriz induzida (Lei de Faraday)
- Produção industrial e transporte de energia elétrica: geradores e transformadores

Orientações e sugestões

A observação de espetros elétricos e magnéticos, reais e em simulações, deverá ser o ponto de partida para a análise das linhas de campo. Recomenda-se a realização experimental do fenômeno de indução eletromagnética, exemplificando os modos de variar o fluxo do campo magnético que atravessa uma superfície plana delimitada por um circuito. Além da produção de corrente elétrica alternada e dos
transformadores, os contextos de aplicação da Lei de Faraday podem incluir lanternas que funcionam com base na indução eletromagnética, placas de indução e fornos de indução.

- **Ondas eletromagnéticas**

 (7 aulas)

Objetivo geral

Compreender a produção de ondas eletromagnéticas e caracterizar fenómenos ondulatórios a elas associados; fundamentar a sua utilização, designadamente nas comunicações e no conhecimento da evolução do Universo.

Conteúdos

- Espetro eletromagnético
- Reflexão, transmissão e absorção
- Leis da reflexão
- Refração: Leis de Snell-Descartes
- Reflexão total
- Difração
- Efeito Doppler
- O *big bang*, o desvio para o vermelho e a radiação cósmica de fundo
- AL 3.1. Ondas: absorção, reflexão, refração e reflexão total
- AL 3.2. Comprimento de onda e difração

Orientações e sugestões

Deve enfatizar-se a relevância da luz no conhecimento do mundo, proporcionado pela investigação científica, e o papel da luz nas mais variadas aplicações tecnológicas.

Os alunos devem ser sensibilizados para o facto de a luz ser um meio usado para conhecer o Universo em larga escala, havendo ainda muitos problemas em aberto que estão a ser estudados pelos físicos. Um contexto que deve ser usado é o dos telescópios que captam luz vinda do espaço exterior em diferentes regiões do espetro eletromagnético, indicando exemplos.

O estudo das ondas eletromagnéticas deve ser efetuado de modo a proporcionar uma visão integrada da ciência, estabelecendo-se, sempre que possível, ligações com outros conteúdos do Programa, por exemplo a utilização do fenómeno da difração em espetroscopia.

A expressão $n\lambda = d \sin \theta$ deve ser fornecida ao aluno sempre que a respetiva atividade (Comprimento de onda e difração) seja objeto de avaliação.
6.3 Trabalho prático-laboratorial

Dada a natureza experimental da física e da química, as atividades de caráter prático e laboratorial, a desenvolver em tempos de maior duração e com a turma desdobrada, merecem uma referência especial.

O trabalho prático-laboratorial, entendido como todo o trabalho realizado pelos alunos, incluindo a resolução de problemas, atividades de pesquisa e de comunicação, atividades com ou sem recurso a material de laboratório (incluindo o controlo de variáveis), é indispensável para o aluno desenvolver atitudes, capacidades e conhecimentos associadas ao trabalho científico.

As atividades laboratoriais devem ser enquadradas com os respetivos conteúdos e referenciais teóricos. A sua planificação deve ser realizada com cuidado, procurando clarificar o tema, discutir ideias prévias dos alunos e identificar as grandezas a medir e as condições a respeitar, de modo a que os trabalhos possam decorrer com o ritmo adequado.

Os alunos devem identificar, na realização das atividades, possíveis erros aleatórios e sistemáticos. Recomenda-se que tenham em atenção o alcance e a sensibilidade dos instrumentos de medida, que indiquem a incerteza associada à escala utilizada no instrumento e que apresentem as medidas com um número correto de algarismos significativos. Nas medições diretas, conseguidas com uma única medição, o resultado da medida deve vir afetado da incerteza associada à escala do instrumento de medida (incerteza absoluta de leitura). Sempre que possível, uma medição direta deve ser efetuada recorrendo a uma série de medições nas mesmas condições. Neste caso, o aluno deve proceder do seguinte modo:

• determinar o valor mais provável da grandeza a medir (média aritmética dos valores das medições);
• determinar a incerteza absoluta de leitura;
• determinar o desvio de cada medição;
• determinar a incerteza absoluta de observação (desvio absoluto máximo);
• tomar para incerteza absoluta a maior das incertezas anteriores (de leitura ou de observação);
• determinar a incerteza relativa em relação à média, exprimindo-a em percentagem (desvio percentual) e associá-la à precisão das medidas;
• exprimir o resultado da medição direta em função do valor mais provável e da incerteza absoluta ou da incerteza relativa.

Os alunos devem estar familiarizados com o cálculo da incerteza absoluta de medições diretas e reconhecer que a precisão das medidas é mais intuitiva quando se exprime a incerteza relativa. Devem determinar o erro relativo, em percentagem (erro percentual), de uma medida que possa ser comparada com valores tabelados ou previstos teoricamente e interpretar o seu valor, associando-o à exatidão da medida. Deve-se sensibilizar os alunos para o facto de a incerteza nas medições diretas se transmitir às medições indiretas, mas não se exige o respetivo cálculo.

Certas atividades requerem o traçado de gráficos e de retas de ajuste aos dados experimentais, pelo que os alunos devem, nesses casos, recorrer à calculadora gráfica (ou equivalente).
Os conceitos relativos ao tratamento de dados devem ser introduzidos de modo faseado, ao longo das atividades laboratoriais, e de acordo com as metas estabelecidas para cada uma delas.

As atividades laboratoriais têm de ser feitas, obrigatoriamente, pelos alunos em trabalho de grupo.

Alguns aspectos relativos à segurança na realização de atividades laboratoriais fazem parte da formação dos alunos e, por isso, as atividades propostas incluem oportunidades para aprenderem a lidar com riscos associados a técnicas de utilização de equipamentos e reagentes.

A segurança deve ser uma preocupação constante, pressupondo-se o cumprimento de regras gerais de conduta no laboratório. Outros aspectos mais específicos devem ser integrados de um modo progressivo, o que se traduz pela definição de metas específicas e transversais relacionadas com a segurança, que são alcançáveis em diferentes trabalhos laboratoriais.

Apresenta-se nos quadros seguintes uma súmula das atividades laboratoriais por ano de escolaridade e por componente, os respetivos objetivos gerais e algumas sugestões. Podem ser utilizados outros procedimentos desde que se atinjam as metas definidas.
Domínio: Elementos químicos e sua organização

<table>
<thead>
<tr>
<th>AL 1.1. Volume e número de moléculas de uma gota de água</th>
<th>Objetivo geral: Medir o volume e a massa de uma gota de água e determinar o número de moléculas de água na gota.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td>Nesta atividade introduzem-se alguns conceitos sobre medição: algarismos significativos, incerteza experimental associada à leitura no aparelho de medida, erros que afetam as medições e modo de exprimir uma medida a partir de uma única medição direta. A atividade pode começar questionando os alunos sobre um processo de medir a massa e o volume de uma gota de água, orientando a discussão de forma a concluírem que a medição deve fazer-se a partir da massa e do volume de um número elevado de gotas. Sugere-se um número de gotas de água não inferior a 100. Posteriormente pode questionar-se qual das grandezas medidas (massa ou volume) deve ser usada para determinar o número de moléculas de água numa gota, e ainda que informação adicional é necessária e onde esta pode ser encontrada. Os resultados obtidos podem ser usados para determinar e comparar ordens de grandeza.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 1.2. Teste de chama</th>
<th>Objetivo geral: Identificar elementos químicos em amostras de sais usando testes de chama.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td>Esta atividade pode adquirir um caráter de pesquisa laboratorial, caso se usem amostras desconhecidas de vários sais. Se forem usadas ansas de Cr/Ni, a atividade deve ser planeada para que a mesma ansa seja utilizada sempre na mesma amostra, o que evita o recurso a ácido clorídrico concentrado para limpeza das ansas. Devem ser abordados aspectos de segurança relacionados com a utilização de fontes de aquecimento e manipulação de reagentes. Os resultados do teste de chama podem ser relacionados com os efeitos observados no fogode-artifício.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 1.3. Densidade relativa de metais</th>
<th>Objetivo geral: Determinar a densidade relativa de metais por picnometria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td>Sugere-se a utilização de metais como cobre, alumínio ou chumbo, na forma de grãos, lâminas ou fios de pequena dimensão. Devem discutir-se erros aleatórios e sistemáticos ligados à influência da temperatura, devidos à formação de bolhas de ar no interior do picnómetro, a uma secagem inadequada do picnómetro ou à presença de impurezas no metal em estudo. Nesta atividade deve introduzir-se o erro percentual associado a um resultado experimental, quando há um valor de referência, e a sua relação com a exatidão desse resultado.</td>
</tr>
</tbody>
</table>
Domínio: Propriedades e transformações da matéria

<table>
<thead>
<tr>
<th>AL 2.1. Miscibilidade de líquidos</th>
<th>Objetivo geral: Prever e avaliar a miscibilidade de líquidos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td></td>
</tr>
<tr>
<td>A atividade pode ter o formato de uma investigação laboratorial, em que se fornecem vários líquidos e informação sobre as correspondentes fórmulas de estrutura. Os líquidos a utilizar poderão ser: água, etanol, acetona e hexano. A atividade pode começar sugerindo aos alunos que formulem hipóteses sobre a miscibilidade dos líquidos propostos, com base nas respetivas fórmulas de estrutura. Um líquido que também poderá ser utilizado é o éter de petróleo. Neste caso deve ser dada a informação aos alunos que se trata de uma mistura de hidrocarbonetos, essencialmente pentano e hexano. Deverão ser tomadas medidas para lidar com riscos associados à manipulação de alguns líquidos.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 2.2. Soluções a partir de solutos sólidos</th>
<th>Objetivo geral: Preparar uma solução aquosa a partir de um soluto sólido.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td></td>
</tr>
<tr>
<td>O reagente a utilizar deve estar devidamente rotulado para que se possa fazer a necessária avaliação de riscos. Sugere-se a utilização de compostos corados como sulfato de cobre(II) pentahidratado ou permanganato de potássio. Não devem usar-se sais contendo catiões de metais pesados (Pb, Hg, Cr, Co, Ni). Devem ser referidos aspectos relacionados com armazenamento de soluções; as soluções preparadas podem ser aproveitadas para outros trabalhos. Devem discutir-se erros aleatórios e sistemáticos.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 2.3. Diluição de soluções</th>
<th>Objetivo geral: Preparar soluções aquosas por diluição.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td></td>
</tr>
<tr>
<td>Previamente, usando água, os alunos devem treinar o uso de pipetas na medição de volumes; estas podem ser da mesma classe, para poderem comparar as respetivas incertezas de leitura. Cada grupo de alunos deverá preparar várias soluções com diferentes fatores de diluição, selecionando pipetas e balões volumétricos adequados. As soluções preparadas podem ser aproveitadas para outros trabalhos. Sugere-se que a solução a diluir seja a preparada na atividade anterior.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 2.4. Reação fotoquímica</th>
<th>Objetivo geral: Investigar o efeito da luz sobre o cloreto de prata.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões</td>
<td></td>
</tr>
</tbody>
</table>
| A reação fotoquímica em estudo envolve a transformação do íon prata em prata metálica e libertação de cloro, sendo representada por:

\[
2 \text{AgCl (s)} \rightarrow 2 \text{Ag (s)} + \text{Cl}_2 (g)
\]

A atividade deve realizar-se em pequena escala para diminuir custos, evitar os riscos associados à libertação de cloro e reduzir a formação de resíduos. Devem utilizar-se soluções de cloreto de sódio e de nitrato de prata de igual concentração. Para investigar o efeito da luz sobre o cloreto de prata deve usar-se luz branca, luz azul e luz vermelha e usar como termo de comparação uma amostra ao abrigo da luz. Deve discutir-se o controlo de variáveis. |
Domínio: Equilíbrio químico

AL 1.1. Síntese do ácido acetilsalicílico

Objetivo geral: Realizar a síntese do ácido acetilsalicílico e determinar o rendimento.

Sugestões

A atividade deve começar com uma discussão prévia com os alunos sobre os reagentes a utilizar, o tipo de reação química e a escrita da equação química que traduz a síntese. Na sequência da discussão pode questionar-se os alunos sobre como calcular o rendimento da síntese.

Deve ser feita a análise dos rótulos de reagentes para que sejam identificados riscos associados à manipulação dos reagentes e medidas de segurança adequadas.

A síntese do ácido acetilsalicílico pode ser substituída por outra síntese, desde que envolva o mesmo tipo de operações: mistura de um reagente sólido com outro líquido ou em solução, aquecimento, filtração por vácuo, lavagem e secagem do produto da reação.

AL 1.2. Efeito da concentração no equilíbrio químico

Objetivo geral: Investigar alterações de equilíbrios químicos em sistemas aquosos por variação da concentração de reagentes e produtos.

Sugestões

A atividade pode começar sugerindo aos alunos que façam previsões sobre o efeito da alteração da concentração de reagentes e de produtos num sistema em equilíbrio.

Para estudo do efeito da concentração no equilíbrio químico pode usar-se o sistema químico em que ocorre a reação traduzida por:

\[\text{Fe}^{3+}(aq) + \text{SCN}^-(aq) \rightleftharpoons \text{FeSCN}^{2+}(aq) \]

Deve discutir-se o controlo de variáveis e a importância da utilização de um branco (amostra de controlo). A atividade deve ser realizada em pequena escala.

Domínio: Reações em sistemas aquosos

AL 2.1. Constante de acidez

Objetivo geral: Determinar uma constante de acidez de um ácido fraco monoprótico por medição do pH de uma solução aquosa de concentração conhecida desse ácido.

Sugestões

A constante de acidez deve ser determinada a partir dos valores de pH medidos e da concentração inicial de cada uma das soluções. Devem usar-se pelo menos três soluções com concentrações diferentes por grupo de trabalho, por exemplo, soluções de ácido acético, 0,100 mol/dm³, 0,050 mol/dm³ e 0,010 mol/dm³. Pode usar-se uma base em vez de um ácido, mantendo-se os mesmos objetivos e descritores, com as necessárias modificações.
AL 2.2. Titulação ácido-base

Objetivo geral: Realizar uma titulação ácido-base para determinar a concentração de uma solução de um ácido (ou de uma base).

Sugestões
Sugere-se que seja feita uma demonstração do procedimento técnico antes da realização da atividade pelos alunos.
A titulação a realizar deve ser ácido forte - base forte e poderão ser usados indicadores colorimétricos, em simultâneo com um medidor de pH ou com um sistema de aquisição e tratamento de dados.

AL 2.3. Série eletroquímica

Objetivo geral: Organizar uma série eletroquímica a partir de reações entre metais e soluções aquosas de sais contendo cátions de outros metais.

Sugestões
Sugere-se a utilização de quatro metais e soluções aquosas dos íons correspondentes, previamente preparadas. Os metais podem ser, por exemplo, ferro, cobre, zinco, chumbo e magnésio.

A atividade pode começar sugerindo aos alunos que façam previsões sobre se as soluções dos íons metálicos em estudo poderiam ser armazenadas em recipientes constituídos por qualquer um dos metais selecionados.
Os ensaios devem ser realizados em pequena escala e em condições controladas de temperatura e volume e concentração das soluções. Para o mesmo metal devem usar-se dimensões e formas idênticas.

AL 2.4. Temperatura e solubilidade de um soluto sólido em água

Objetivo geral: Investigar o efeito da temperatura na solubilidade de um soluto sólido em água.

Sugestões
A atividade pode começar sugerindo aos alunos que formulem hipóteses sobre o efeito da temperatura na solubilidade de um soluto sólido em água.
Sugere-se o uso de nitrato de potássio. Devem usar-se quatro amostras de soluto, de massas diferentes.
O procedimento deve contemplar o aquecimento da mistura até que haja dissolução total da amostra e posterior arrefecimento até que se formem os primeiros cristais, momento em que se registar a temperatura.
Deve ser feita a discussão do controle de variáveis.
O sal em estudo é usado em quantidade apreciável devendo, por isso, ser reciclado.
Domínio: Energia e sua conservação

<table>
<thead>
<tr>
<th>AL 1.1. Movimento num plano inclinado: variação de energia cinética e distância percorrida</th>
<th>Objetivo geral: Estabelecer a relação entre variação de energia cinética e distância percorrida num plano inclinado e utilizar processos de medição e de tratamento estatístico de dados.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões:</td>
<td>Largar, de uma marca numa rampa, um carrinho ou um bloco com uma tira opaca estreita na sua parte superior e registar os tempos de passagem numa marca mais abaixo na rampa. Sugerir que o carrinho seja largado pelo menos três vezes do mesmo nível na rampa, de modo a possibilitar um tratamento estatístico dos intervalos de tempos de passagem pela fotocélula; o seu valor médio servirá para determinar a velocidade naquela posição (quociente da medida da largura da tira por esse valor médio). Far-se-á a distinção entre incerteza associada a uma só medição (incerteza de leitura) e a um conjunto de medições efetuadas nas mesmas condições (incerteza de observação). Deve dar-se a indicação de que a velocidade medida a partir da tira opaca estreita é uma velocidade média num intervalo de tempo muito curto e que se approxima da velocidade num dado instante. Não é, no entanto, o momento de explicitar a diferença entre velocidade instantânea e média. Medir a massa do carrinho e determinar a energia cinética. Repetir o procedimento para cinco distâncias percorridas igualmente espaçadas, no mínimo. Construir o gráfico da variação de energia cinética em função da distância percorrida e relacionar estas duas grandezas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AL 1.2. Movimento vertical de queda e de ressalto de uma bola: transformações e transferências de energia</th>
<th>Objetivo geral: Investigar, com base em considerações energéticas (transformações e transferências de energia), o movimento vertical de queda e de ressalto de uma bola.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugestões:</td>
<td>Poder-se-á deixar cair uma bola, usando um sistema de aquisição automático de dados, ou deixar cair uma bola sucessivamente de alturas diferentes medindo-se as alturas atingidas no primeiro ressalto. No segundo caso, devem-se fazer pelo menos três medições para cada uma das alturas de queda e encontrar o valor mais provável da altura do primeiro ressalto e a incerteza associada. Os grupos devem usar bolas ou superfícies diferentes para compararem resultados. Construir um gráfico da altura de ressalto em função da altura de queda, traçando a reta que melhor se ajusta ao conjunto dos valores medidos. Partindo da equação dessa reta prever a altura do primeiro ressalto para uma altura de queda não medida. Admitindo a conservação de energia mecânica na queda e no ressalto, justificar por que motivo a bola não sobe até à altura de onde caiu, relacionando a energia dissipada com a elasticidade dos materiais em colisão. Comparar a elasticidade dos materiais utilizados pelos vários grupos.</td>
</tr>
</tbody>
</table>
AL 2.1. Características de uma pilha

Objetivo geral: Determinar as características de uma pilha a partir da sua curva característica.

Sugestões:
Montar um circuito com a pilha e uma resistência exterior variável; medir a diferença de potencial elétrico nos terminais da pilha e a corrente elétrica que percorre o circuito, para diferentes valores da resistência exterior. Traçar o gráfico que relaciona estas grandezas, de modo a determinar, a partir dele, as características do gerador: força eletromotriz e resistência interna.

Como a resistência interna da pilha é muito inferior à do voltímetro, o valor lido diretamente nos terminais do voltímetro constitui uma boa aproximação para a força eletromotriz da pilha. Este valor será comparado e explicado com o valor obtido graficamente.

Como a resistência interna de uma pilha aumenta com o seu uso, sugere-se que metade da turma utilize pilhas novas e a outra metade pilhas usadas. Os alunos devem justificar quais as condições em que a pilha transforma mais energia, isto é, se “gasta” mais facilmente.

AL 3.1. Radiação e potência elétrica de um painel fotovoltaico

Objetivo geral: Investigar a influência da irradiância e da diferença de potencial elétrico no rendimento de um painel fotovoltaico.

Sugestões:
Montar um circuito com um painel fotovoltaico, um amperímetro e uma resistência variável à qual se associa um voltímetro. Uma lâmpada simulará a radiação solar.

Controlando a irradiância através da variação da inclinação da iluminação relativamente ao painel e pela interposição de filtros, calcular a potência fornecida à resistência, a partir das medidas no voltímetro e no amperímetro, retirando conclusões.

Iluminando o painel com a lâmpada fixa, a uma certa distância e com incidência perpendicular, variar a resistência, calcular a potência fornecida, e elaborar o gráfico da potência em função da diferença de potencial elétrico fornecida (tensão de saída do painel). Da análise do gráfico concluir que o rendimento é máximo para um dado valor da tensão de saída.

AL 3.2. Capacidade térmica mássica

Objetivo geral: Determinar a capacidade térmica mássica de um material.

Sugestões:
Usar um bloco calorimétrico cilíndrico, com dois orifícios, um para a resistência elétrica de aquecimento e outro para um termômetro, e efetuar uma montagem que permita obter dados para determinar as capacidades térmicas mássicas. Os grupos poderão comparar os resultados obtidos com cilindros de diferentes materiais.

Medir a corrente elétrica e a diferença de potencial elétrico na resistência e registar a temperatura ao longo do tempo.

Representar graficamente a variação de temperatura do bloco em função da energia fornecida para determinar a capacidade térmica a partir do inverso do declive da reta de ajuste.

Medir a massa do bloco e calcular a capacidade térmica mássica do metal, avaliando a exatidão da medida pelo erro percentual.

Na preparação da atividade deve prever-se a evolução da temperatura do metal, no intervalo de tempo em que a resistência está ligada e imediatamente após ser desligada, analisando fatores que contribuem para minimizar a dissipação de energia do material.
AL 3.3. Balanço energético num sistema termodinâmico

Objetivo geral: Estabelecer balanços energéticos e determinar a entalpia de fusão do gelo.

Sugestões:

Envolver os recipientes utilizados com isolantes térmicos.
Considerar duas massas de água, a diferentes temperaturas, e prever a temperatura final da mistura. Adicionar as massas de água, medir a temperatura de equilíbrio e confrontar com a previsão efetuada. Efetuando balanços energéticos comparar o resultado obtido experimentalmente com o previsto teoricamente, justificando possíveis diferenças.

Colocar num recipiente uma massa de água a uma temperatura 15 °C a 20 °C acima da temperatura ambiente e um termômetro (ou sensor de temperatura) no seu interior. Iniciar o registo da temperatura e de imediato adicionar à água uma massa de gelo. Continuar o registo de temperatura até uns instantes após todo o gelo ter fundido. Estabelecer os balanços energéticos e determinar a entalpia de fusão do gelo. O gelo pode ser colocado numa tina com água, algum tempo antes, de modo que a temperatura no seu interior se aproxime de 0 °C.

11.º Ano: Componente de Física

Domínio: Mecânica

AL 1.1. Queda livre: força gravitica e aceleração da gravidade

Objetivo geral: Determinar a aceleração da gravidade num movimento de queda livre e verificar se depende da massa dos corpos.

Sugestões:

Fazer uma montagem por forma a calcular a aceleração da queda de um corpo, usando o conceito de aceleração média, admitindo que a aceleração é constante. Para simplificar a execução laboratorial pode considerar-se o intervalo de tempo entre o instante em que o corpo é largado e o instante em que atinge uma posição mais baixa da trajetória, de modo a medir apenas uma velocidade (a velocidade final).

Repetir o movimento de queda, medindo três valores para o tempo de queda, e determinar o valor mais provável deste tempo para efetuar o cálculo da velocidade. Os alunos devem distinguir o intervalo de tempo que decorre quando o corpo passa pela fotocélula, cujo valor é necessário para a determinação da velocidade, e o intervalo de tempo que decorre entre duas posições na trajetória. Grupos diferentes podem usar corpos de massas diferentes para compararem resultados.

AL 1.2. Forças nos movimentos retilíneos acelerado e uniforme

Objetivo geral: Identificar forças que atuam sobre um corpo, que se move em linha reta num plano horizontal, e investigar o seu movimento quando sujeito a uma resultante de forças não nula e nula.

Sugestões:

Fazer uma montagem com um carrinho, que se mova sobre um plano horizontal, ligado por um fio (que passa na gola de uma roldana) a um corpo que cai na vertical. O fio deve ter um comprimento que permita a análise do movimento quer quando o fio está em tensão quer quando deixa de estar em tensão. Determinar a velocidade do carrinho, em diferentes pontos do percurso, quer quando o fio o
está a puxar, quer quando o fio deixa de estar em tensão. Construir o gráfico da velocidade do carrinho em função do tempo, para análise do movimento.
A execução tornar-se-á mais simples e a análise do gráfico mais rica se for usado um sistema de aquisição automático de dados que disponibilize a velocidade do carrinho em função do tempo.

AL 1.3. Movimento uniformemente retardado: velocidade e deslocamento

Objetivo geral: Relacionar a velocidade e o deslocamento num movimento uniformemente retardado e determinar a aceleração e a resultante das forças de atrito.

Sugestões:
Colocar na superfície superior de um bloco uma tira opaca estreita. Largar o bloco de uma marca numa rampa, deixando que ele se mova e passe a deslizar depois num plano horizontal, até parar.
Registar o tempo de passagem da tira opaca numa fotocélula, numa posição em que o bloco se encontra já no plano horizontal, e medir a distância percorrida entre essa posição e a de paragem do bloco, tendo como referência a tira opaca (distância de travagem). Repetir três vezes e fazer a média dos tempos e das distâncias. A velocidade será calculada a partir do quociente da largura da tira de cartão opaca pelo valor mais provável do intervalo de tempo da sua passagem pela fotocélula.
Repetir o procedimento, largando o bloco de diferentes marcas da rampa, de modo a obterem-se diferentes distâncias de travagem. Construir o gráfico do quadrado da velocidade em função da distância de travagem, traçar a reta de regressão e determinar a respetiva equação, relacionando o declive da reta com a aceleração do movimento. Determinar a resultante das forças de atrito com base na Segunda Lei de Newton.

AL 2.1. Características do som

Objetivo geral: Investigar características de um som (frequência, intensidade, comprimento de onda, timbre) a partir da observação de sinais elétricos resultantes da conversão de sinais sonoros.

Sugestões:
Ligar um microfone à entrada de um osciloscópio com a função AT (auto trigger ou disparo automático) ativada.
Produzindo sons com um gerador de sinais e um altifalante, ou com diapasões, analisar as variações do sinal obtido no osciloscópio, explorando e investigando os efeitos de variar a intensidade, a frequência e o timbre do som.
Medir períodos e calcular frequências dos sinais obtidos comparando-os com os valores indicados nos aparelhos que os originam.
Procurar limites de audibilidade ligando auscultadores ao gerador de sinais e aumentando ou diminuindo a frequência dos sinais.
Ligar dois microfones ao osciloscópio e colocá-los bem alinhados em frente ao altifalante, de modo a que os dois sinais obtidos fiquem sobrepostos no ecrã. Marcar a sua posição sobre a mesa de trabalho e afastar progressivamente um deles. Medir as distâncias a que se deslocou o microfone até se observarem de novo os sinais com os seus máximos alinhados no ecrã; esta distância será o comprimento de onda. Se o número de osciloscópios existentes na escola não permitir o trabalho laboratorial em grupos de dimensão razoável (três a quatro alunos) podem ser usados computadores com software de edição de som, ou outros sistemas de aquisição automático de dados aos quais se liga um microfone.
AL 2.2. Velocidade de propagação do som

Objetivo geral: Determinar a velocidade de propagação de um sinal sonoro.

Sugestões:
Ligar um microfone à entrada de um osciloscópio com a função de disparo controlado por um nível de tensão ativada (NORM). Produzir um sinal impulso forte perto do microfone (que deve ter um amplificador incorporado ou estar ligado a um amplificador) e observar o sinal originado. Se necessário, para observar o aparecimento do sinal, controlar o nível de disparo (LEVEL). Colocar depois o microfone junto das extremidades de uma mangueira, cujo comprimento foi medido, e, produzindo repetidamente sinais impulsivos, observar a localização do novo sinal. Registar o seu espaçamento temporal à origem (tempo que o impulso demorou a percorrer a mangueira), repetir e encontrar o valor mais provável. Usando este tempo e o comprimento da mangueira, calcular a velocidade do som. Registar a temperatura, comparar o valor obtido experimentalmente com valores tabelados e avaliar o erro percentual. Grupos diferentes podem usar mangueiras de diferentes comprimentos e compararem resultados. Em alternativa pode ser usado um computador com software de edição de som, ou um outro sistema de aquisição automático de dados.

AL 3.1. Ondas: absorção, reflexão, refração e reflexão total

Objetivo geral: Investigar os fenómenos de absorção, reflexão, refração e reflexão total, determinar o índice de refração de um meio em relação ao ar e prever o ângulo crítico.

Sugestões:
A atividade pode fazer-se com luz visível ou outra, mas, em qualquer caso, os alunos devem compreender que os fenômenos são comuns a qualquer tipo de ondas. Estudar o comportamento da luz na presença de diversos materiais (água, vidro, glicerina, plástico, metal ou acrílico) no que respeita aos fenômenos de absorção, reflexão, refração e reflexão total. Fazer incidir luz em diversos materiais e avaliar a sua capacidade refletora, a transparência e a diminuição da intensidade do feixe, ou a mudança da direção do feixe no novo meio. Medir os ângulos de incidência e de reflexão numa placa reflectora, relacionando-os. Medir ângulos de refração para diferentes ângulos de incidência (quatro ou cinco valores diferentes). Construir o gráfico do seno do ângulo de refração em função do seno do ângulo de incidência e determinar o índice de refração relativo dos dois meios a partir da equação da reta de regressão. Prever o ângulo crítico de reflexão total entre um meio e o ar e verificar o fenômeno da reflexão total para ângulos de incidência superiores ao ângulo crítico. Observar o que acontece à luz enviada para o interior de uma fibra ótica.

AL 3.2. Comprimento de onda e difração

Objetivo geral: Investigar o fenômeno da difração e determinar o comprimento de onda da luz de um laser.

Sugestões:
Ligar um laser e observar num alvo um ponto intensamente iluminado. Apontar o feixe perpendicularly para uma fenda de abertura variável e, iniciando com a abertura máxima, investigar no alvo as variações na forma da zona iluminada quando se vai fechando a fenda. Investigar também o efeito de intercalar fendas múltiplas entre o feixe e o alvo, sucessivamente de número crescente.
Concluir que os pontos luminosos observados resultam da difração e aparecem mais espaçados com o aumento do número de fendas.

Usando uma rede de difração de característica conhecida (300 a 600 linhas/mm), calcular a distância entre duas fendas consecutivas, \(d \), e determinar o comprimento de onda da luz laser a partir da expressão \(n \lambda = d \sin \theta \) (sendo \(n \) a ordem do máximo e \(\theta \) o ângulo entre a direção perpendicular à rede e a direção da linha que passa pelo ponto luminoso e pelo ponto de incidência do feixe na rede de difração).

Os alunos devem ser alertados para os cuidados a ter com a luz laser.

Pode também usar-se a rede de difração com luz policromática (luz branca) ou com luz LED (por exemplo com LED vermelho, verde e azul), evidenciando assim o fenômeno da difração e o seu uso em espectroscopia.
7. **Avaliação**

O processo de avaliação desta disciplina decorre dos princípios gerais da avaliação: deve ser contínua, apoiada em diversos instrumentos adaptados às aprendizagens em apreciação, ter um caráter formativo – não só para os alunos, para controlo da sua aprendizagem, mas também para o professor, como reguladora das suas opções de ensino – e culminar em situações de avaliação sumativa.

O aluno deve ser envolvido na avaliação, desenvolvendo o sentido crítico relativamente ao seu trabalho e à sua aprendizagem, através, por exemplo, da promoção de atitudes reflexivas e do recurso a processos metacognitivos.

Os critérios de avaliação definidos em Conselho Pedagógico, sob proposta dos departamentos curriculares, devem contemplar os critérios de avaliação da componente prática-laboratorial, designadamente as atividades laboratoriais de caráter obrigatório. De acordo com o estabelecido no ponto 5 do art.º 7.º da Portaria n.º 243/2012, são obrigatórios momentos formais de avaliação da dimensão prática ou experimentais integrados no processo de ensino. E, de acordo com a alínea c) do mesmo ponto, na disciplina de Física e Química A, a componente prática-laboratorial tem um peso mínimo de 30% no cálculo da classificação a atribuir em cada momento formal de avaliação.

Dada a centralidade da componente prática-laboratorial na física e na química identificam-se nas metas curriculares, para cada uma das atividades laboratoriais, descritores específicos e transversais, os quais devem servir como referência para a avaliação do desempenho dos alunos nessas atividades.

Para responder aos diversos itens dos testes de avaliação os alunos podem consultar um formulário e, no caso da componente de Química, a Tabela Periódica, numa versão que contenha, pelo menos, informação do símbolo químico, do número atómico e da massa atómica relativa.

8. **Bibliografia**

 <http://www.acs.org/content/dam/acsorg/about/governance/committees/education/exploring-the-molecular-vision.pdf> (acedido em 15 de outubro de 2013)

- Australian Curriculum, *Physics, Senior Secondary Curriculum*, Assessment and Reporting Authority (ACARA), 2012.

• European Association for Chemical and Molecular Sciences (EuCheMS), *CHEMISTRY: Developing solutions in a changing world*, 2011.
 [www.euchems.eu/fileadmin/user_upload/highlights/Euchems_Roadmap_gesamt_final2.pdf] (acedido em 7 de outubro de 2013)

• European Association for Chemical and Molecular Sciences (EuCheMS), *CHEMISTRY, Finding solutions in a changing world*, 2011.

• Gabinete de Avaliação Educacional (GAVE), Ministério da Educação e Ciência, Relatórios dos Exames Nacionais e Testes Intermédios (2008 a 2012)

• Instituto Português da Qualidade, *Vocabulário Internacional de Metrologia (VIM)*, Joint Committee for Guides in Metrology, 2012.

• OCR Recognising Achievement, *GCE Chemistry A v4, AS/A Level GCE*, United Kingdom, 2013.

• OCR Recognising Achievement, *GCE Physics A v4, AS/A Level GCE*, United Kingdom, 2013.

FORMULÁRIO

Grupos funcionais

- OH
- C=O
- C=O
- N

Quantidades, massas e volumes

\[m = n \cdot M \quad N = n \cdot N_A \quad V = n \cdot V_m \quad \rho = \frac{m}{V} \]

Soluções e dispersões

\[c = \frac{n}{V} \quad x_A = \frac{n_A}{n_{total}} \quad \% (m/m) = \frac{m_A}{m_{total}} \times 10^2 \quad \% (V/V) = \frac{V_A}{V_{total}} \times 10^2 \]

\[ppm_{m} = \frac{m_A}{m_{total}} \times 10^6 \quad ppm_{V} = \frac{V_A}{V_{total}} \times 10^6 \]

Reações químicas

\[\text{pH} = -\log \left(\frac{[\text{H}_3\text{O}^+]}{\text{mol dm}^{-3}}\right) \]

Energia em movimentos

\[E_c = \frac{1}{2} m \cdot v^2 \quad W = F \cdot d \cdot \cos \alpha \quad W = \Delta E_c \quad E_{pg} = m \cdot g \cdot h \]

\[E_m = E_c + E_p \quad P = \frac{E}{\Delta t} \quad W = -\Delta E_{pg} \]

Energia em fenómenos térmicos

\[E = m \cdot c \cdot \Delta T \quad E = m \cdot \Delta H \quad \Delta U = W + Q \quad E_r = \frac{P}{A} \]

\[T/K = t / ^\circ \text{C} + 273,15 \]

Energia em fenómenos elétricos

\[U = R \cdot I \quad R = \rho \cdot \frac{l}{A} \quad P = U \cdot I \quad U = \varepsilon - r \cdot I \]

Cinemática

\[v = v_0 + a \cdot t \quad x = x_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 \quad a_c = \frac{v^2}{r} \quad \omega = \frac{2\pi}{T} \quad v = \omega \cdot r \]

Dinâmica

\[\ddot{F} = m \cdot \ddot{a} \quad F_g = G \cdot \frac{m_1 \cdot m_2}{d^2} \]

Ondas e sinais sinusoidais

\[\lambda = \frac{v}{f} \quad y = A \cdot \sin(\omega \cdot t) \quad n = \frac{c}{v} \quad n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2 \]

Eletromagnetismo

\[\Phi_m = B \cdot A \cdot \cos \alpha \quad E_i = \frac{|\Delta \Phi_m|}{\Delta t} \quad \frac{U_s}{U_p} = \frac{N_s}{N_p} \]
METAS CURRICULARES

de

Física e Química A
10.º ano – Química

Elementos químicos e sua organização

Massa e tamanho dos átomos

1. Consolidar e ampliar conhecimentos sobre elementos químicos e dimensões à escala atómica.

1.1 Descrever a constituição de átomos com base no número atómico, no número de massa e na definição de isótopos.

1.2 Determinar a ordem de grandeza de um número relacionando tamanhos de diferentes estruturas na Natureza (por exemplo, célula, ser humano, Terra e Sol) numa escala de comprimentos.

1.3 Comparar ordens de grandeza de distâncias e tamanhos à escala atómica a partir, por exemplo, de imagens de microscopia de alta resolução, justificando o uso de unidades adequadas.

1.4 Associar a nanotecnologia à manipulação da matéria à escala atómica e molecular e identificar algumas das suas aplicações com base em informação selecionada.

1.5 Indicar que o valor de referência usado como padrão para a massa relativa dos átomos e das moléculas é 1/12 da massa do átomo de carbono-12.

1.6 Interpretar o significado de massa atómica relativa média e calcular o seu valor a partir de massas isotópicas, justificando a proximidade do seu valor com a massa do isótopo mais abundante.

1.7 Identificar a quantidade de matéria como uma das grandezas do Sistema Internacional (SI) de unidades e caracterizar a sua unidade, mole, com referência ao número de Avogadro de entidades.

1.8 Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente, identificando a constante de Avogadro como constante de proporcionalidade.

1.9 Calcular massas molares a partir de tabelas de massas atómicas relativas (médias).

1.10 Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar.

1.11 Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas grandezas.

Energia dos eletrões nos átomos

2. Reconhecer que a energia dos eletrões nos átomos pode ser alterada por absorção ou emissão de energias bem definidas, correspondendo a cada elemento um espetro atómico característico, e que os eletrões nos átomos se podem considerar distribuídos por níveis e subníveis de energia.

2.1 Indicar que a luz (radiação eletromagnética ou onda eletromagnética) pode ser detetada como partículas de energia (fotões), sendo a energia de cada fotão proporcional à frequência dessa luz.

2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético,
comparando as energias dos respetivos fotões.

2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão.

2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão, concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos.

2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual.

2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos.

2.7 Associar cada série espectral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho.

2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá.

2.9 Comparar espetros de absorção e de emissão de elementos químicos, concluindo que são característicos de cada elemento.

2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense).

2.11 Indicar que a energia dos eletrões nos átomos inclui o efeito das atrações entre os eletrões e o núcleo, por as suas cargas serem de sinais contrários, e das repulsões entre os eletrões, por as suas cargas serem do mesmo sinal.

2.12 Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões à volta do núcleo atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões.

2.13 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões.

2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de energia e subníveis de energia.

2.15 Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que permite dois estados diferentes.

2.16 Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico do átomo.

2.17 Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes está associada e distingui-las quanto ao número e à forma.

2.18 Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando esse resultado com o princípio de Pauli.

2.19 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que orbitais de um mesmo subnível np, ou nd, têm a mesma energia.

2.20 Estabelecer as configurações eletrónicas dos átomos, utilizando a notação spd, para
elementos até \(Z = 23 \), atendendo ao Princípio da Construção, ao Princípio da Exclusão de Pauli e à maximização do número de eletrões desemparelhados em orbitais degenerados.

Tabela Periódica

3. Reconhecer na Tabela Periódica um meio organizador de informação sobre elementos químicos e respetivas substâncias elementares e compreender que a estrutura eletrónica dos átomos determina as propriedades dos elementos.

4.1 Identificar marcos históricos relevantes no estabelecimento da Tabela Periódica atual.
4.2 Interpretar a organização da Tabela Periódica com base em períodos, grupos e blocos e relacionar a configuração eletrónica dos átomos dos elementos com a sua posição relativa na Tabela Periódica.
4.3 Identificar a energia de ionização e o raio atómico como propriedades periódicas dos elementos.
4.4 Distinguir entre propriedades de um elemento e propriedades da(s) substância(s) elementar(es) correspondentes.
4.5 Comparar raios atómicos e energias de ionização de diferentes elementos químicos com base nas suas posições relativas na Tabela Periódica.
4.6 Interpretar a tendência geral para o aumento da energia de ionização e para a diminuição do raio atómico observados ao longo de um período da Tabela Periódica.
4.7 Interpretar a tendência geral para a diminuição da energia de ionização e para o aumento do raio atómico observados ao longo de um grupo da Tabela Periódica.
4.8 Explicar a formação dos íons mais estáveis de metais e de não-metais.
4.9 Justificar a baixa reatividade dos gases nobres.

Propriedades e transformações da matéria

Ligação química

1. Compreender que as propriedades das moléculas e materiais são determinadas pelo tipo de átomos, pela energia das ligações e pela geometria das moléculas.

1.1 Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de ligações químicas.
1.2 Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de repulsão entre eletrões e forças de repulsão entre núcleos.
1.3 Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longas distâncias, sendo estas distâncias respetivamente menores e maiores do que a distância de equilíbrio.
1.4 Indicar que os átomos podem partilhar eletrões formando ligações covalentes (partilha localizada de eletrões de valência), ligações iónicas (transferência de eletrões entre
átomos originando estruturas com caráter iônico) e ligações metálicas (partilha de
eletrões de valência deslocalizados por todos os átomos).

1.5 Associar as ligações químicas em que não há partilha significativa de eletrões a ligações
intermoleculares.

1.6 Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H₂, N₂, O₂ e
F₂, segundo o modelo de Lewis.

1.7 Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de
moleculas como CH₄, NH₃, H₂O e CO₂.

1.8 Relacionar o parâmetro ângulo de ligação nas moléculas CH₄, NH₃, H₂O e CO₂ com base
no modelo da repulsão dos pares de eletrões de valência.

1.9 Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões
de valência, em moléculas como CH₄, NH₃, H₂O e CO₂.

1.10 Prever a relação entre as energias de ligação ou os comprimentos de ligação em
moleculas semelhantes, com base na variação das propriedades periódicas dos
elementos envolvidos nas ligações (por exemplo H₂O e H₂S ou HCl e HBr).

1.11 Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas
diatómicas heteronucleares são polares, interpretando essa polaridade com base na
distribuição de carga elétrica entre os átomos.

1.12 Identificar ligações polares e apolares com base no tipo de átomos envolvidos na
ligação.

1.13 Indicar alguns exemplos de moléculas polares (H₂O, NH₃) e apolares (CO₂, CH₄).

1.14 Identificar hidrocarbonetos saturados, insaturados e haloalcanos e, no caso de
hidrocarbonetos saturados de cadeia aberta até 6 átomos de carbono, representar a
fórmula de estrutura a partir do nome ou escrever o nome a partir da fórmula de
estrutura.

1.15 Interpretar e relacionar os parâmetros de ligação, energia e comprimento, para a ligação
CC nas moléculas etano, eteno e etino.

1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas)
em moléculas orgânicas, biomoléculas e fármacos, a partir das suas fórmulas de
estrutura.

1.17 Identificar ligações intermoleculares – de hidrogénio e de van der Waals – com base nas
características das unidades estruturais.

1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos com as ligações intermoleculares
que se estabelecem entre unidades estruturais.

Gases e dispersões

2. Reconhecer que muitos materiais se apresentam na forma de dispersões que podem ser
caracterizadas quanto à sua composição.

2.1 Definir volume molar e, a partir da Lei de Avogadro, concluir que tem o mesmo valor
para todos os gases à mesma pressão e temperatura.

2.2 Relacionar a massa de uma amostra gasosa e a quantidade de matéria com o volume
molar, definidas as condições de pressão e temperatura.
2.3 Relacionar a massa volúmica de uma substância gasosa com a sua massa molar e volume molar.
2.4 Descrever a composição da troposfera terrestre, realçando N\textsubscript{2} e O\textsubscript{2} como os seus componentes mais abundantes.
2.5 Indicar poluentes gasosos na troposfera e identificar as respetivas fontes.
2.6 Distinguir solução, dispersão coloidal e suspensão com base na ordem de grandeza da dimensão das partículas constituintes.
2.7 Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e suspensões de matéria particulada.
2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas.

Transformações químicas

3. Compreender os fundamentos das reações químicas, incluindo reações fotoquímicas, do ponto de vista energético e da ligação química.

3.1 Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações químicas.
3.2 Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo endoenergético.
3.3 Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado, ocorrem, respectivamente, com aumento ou diminuição de temperatura.
3.4 Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu sinal (positivo ou negativo).
3.5 Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e dos produtos e a variação de entalpia.
3.6 Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação a partir da variação de entalpia e de outras energias de ligação.
3.7 Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas.
3.8 Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos.
3.9 Interpretar fenómenos de fotodissociação e fotoionização na atmosfera terrestre envolvendo O\textsubscript{2}, O\textsubscript{3}, e N\textsubscript{2} relacionando-os com a energia da radiação envolvida e com a estabilidade destas moléculas.
3.10 Identificar os radicais livres como espécies muito reativas por possuírem elétrons desemparelhados.
3.11 Interpretar a formação e destruição do ozono estratosférico, com base na fotodissociação de O_2 e de O_3, por envolvimento de radiações ultravioletas UVB e UVC, concluindo que a camada de ozono atua como um filtro dessas radiações.

3.12 Explicar a formação dos radicais livres a partir dos clorofluorocarbonetos (CFC) tirando conclusões sobre a sua estabilidade na troposfera e efeitos sobre o ozono estratosférico.

3.13 Indicar que o ozono na troposfera atua como poluente em contraste com o seu papel protetor na estratosfera.
10.º ano – Física

Energia e movimentos

1. Compreender em que condições um sistema pode ser representado pelo seu centro de massa e que a sua energia como um todo resulta do seu movimento (energia cinética) e da interação com outros sistemas (energia potencial); interpretar as transferências de energia como trabalho em sistemas mecânicos, os conceitos de força conservativa e não conservativa e a relação entre trabalho e variações de energia, reconhecendo as situações em que há conservação de energia mecânica.

1.1 Indicar que um sistema físico (sistema) é o corpo ou o conjunto de corpos em estudo.
1.2 Associar a energia cinética ao movimento de um corpo e a energia potencial (gravítica, elétrica, elástica) a interações desse corpo com outros corpos.
1.3 Aplicar o conceito de energia cinética na resolução de problemas envolvendo corpos que apenas têm movimento de translação.
1.4 Associar a energia interna de um sistema às energias cinética e potencial das suas partículas.
1.5 Identificar um sistema mecânico como aquele em que as variações de energia interna não são tidas em conta.
1.6 Indicar que o estudo de um sistema mecânico que possui apenas movimento de translação pode ser reduzido ao de uma única partícula com a massa do sistema, identificando-a com o centro de massa.
1.7 Identificar trabalho como uma medida da energia transferida entre sistemas por ação de forças e calcular o trabalho realizado por uma força constante em movimentos retilíneos, qualquer que seja a direção dessa força, indicando quando é máximo.
1.8 Enunciar e aplicar o Teorema da Energia Cinética.
1.9 Definir forças conservativas e forças não conservativas, identificando o peso como uma força conservativa.
1.10 Aplicar o conceito de energia potencial gravítica ao sistema em interação corpo-Terra, a partir de um valor para o nível de referência.
1.11 Relacionar o trabalho realizado pelo peso com a variação da energia potencial gravítica e aplicar esta relação na resolução de problemas.
1.12 Definir e aplicar o conceito de energia mecânica.
1.13 Concluir, a partir do Teorema da Energia Cinética, que, se num sistema só atuarem forças conservativas, ou se também atuarem forças não conservativas que não realizem trabalho, a energia mecânica do sistema será constante.
1.14 Analisar situações do quotidiano sob o ponto de vista da conservação da energia mecânica, identificando transformações de energia (energia potencial gravítica em energia cinética e vice-versa).
1.15 Relacionar a variação de energia mecânica com o trabalho realizado pelas forças não conservativas e aplicar esta relação na resolução de problemas.
1.16 Associar o trabalho das forças de atrito à diminuição de energia mecânica de um corpo e à energia dissipada, a qual se manifesta, por exemplo, no aquecimento das superfícies em contacto.
1.17 Aplicar o conceito de potência na resolução de problemas.
1.18 Interpretar e aplicar o significado de rendimento em sistemas mecânicos, relacionando a dissipação de energia com um rendimento inferior a 100%.

Energia e fenómenos elétricos

2. Descrever circuitos elétricos a partir de grandezas elétricas; compreender a função de um gerador e as suas características e aplicar a conservação da energia num circuito elétrico tendo em conta o efeito Joule.

2.1 Interpretar o significado das grandezas corrente elétrica, diferença de potencial elétrico (tensão elétrica) e resistência elétrica.
2.2 Distinguir corrente contínua de corrente alternada.
2.3 Interpretar a dependência da resistência elétrica de um condutor filiforme com a resistividade, característica do material que o constitui, e com as suas características geométricas (comprimento e área da secção reta).
2.4 Comparar a resistividade de materiais bons condutores, maus condutores e semicondutores e indicar como varia com a temperatura, justificando, com base nessa dependência, exemplos de aplicação (resistências padrão para calibração, termímetro em termómetros, etc.).
2.5 Associar o efeito Joule à energia dissipada nos componentes elétricos, devido à sua resistência, e que é transferida para as vizinhanças através de calor, identificando o LED (diodo emissor de luz) como um componente de elevada eficiência (pequeno efeito Joule).
2.6 Caracterizar um gerador de tensão contínua pela sua força eletromotriz e resistência interna, interpretando o seu significado, e determinar esses valores a partir da curva característica.
2.7 Identificar associações de componentes elétricos em série e paralelo e caracterizá-las quanto às correntes elétricas que os percorrem e à diferença de potencial elétrico nos seus terminais.
2.8 Interpretar a conservação da energia num circuito com gerador de tensão e condutores puramente resistivos, através da transferência de energia do gerador para os condutores, determinando diferenças de potencial elétrico, corrente elétrica, energias dissipadas e potência elétrica do gerador e do condutor.

Energia, fenómenos térmicos e radiação

3. Compreender os processos e mecanismos de transferências de energia entre sistemas termodinâmicos, interpretando-os com base na Primeira e na Segunda Leis da Termodinâmica.

3.1 Distinguir sistema, fronteira e vizinhança e definir sistema isolado.
3.2 Identificar um sistema termodinâmico como aquele em que se tem em conta a sua energia interna.
3.3 Indicar que a temperatura é uma propriedade que determina se um sistema está ou não em equilíbrio térmico com outros e que o aumento de temperatura de um sistema implica, em geral, um aumento da energia cinética das suas partículas.

3.4 Indicar que as situações de equilíbrio térmico permitem estabelecer escalas de temperatura, aplicando à escala de temperatura Celsius.

3.5 Relacionar a escala de Celsius com a escala de Kelvin (escala de temperatura termodinâmica) e efetuar conversões de temperatura em graus Celsius e kelvin.

3.6 Identificar calor como a energia transferida espontaneamente entre sistemas a diferentes temperaturas.

3.7 Descrever as experiências de Thompson e de Joule identificando o seu contributo para o reconhecimento de que o calor é energia.

3.8 Distinguir, na transferência de energia por calor, a radiação – transferência de energia através da propagação de luz, sem haver contacto entre os sistemas – da condução e da convecção que exigem contacto entre sistemas.

3.9 Indicar que todos os corpos emitem radiação e que à temperatura ambiente emitem predominantemente no infravermelho, dando exemplos de aplicação desta característica (sensores de infravermelhos, visão noturna, termômetros de infravermelhos, etc.).

3.10 Indicar que todos os corpos absorvem radiação e que a radiação visível é absorvida totalmente pelas superfícies pretas.

3.11 Associar a irradiação de um corpo à energia da radiação emitida por unidade de tempo e por unidade de área.

3.12 Identificar uma célula fotovoltaica como um dispositivo que aproveita a energia da luz solar para criar diretamente uma diferença de potencial elétrico nos seus terminais, produzindo uma corrente elétrica contínua.

3.13 Dimensionar a área de um sistema fotovoltaico conhecida a irradiação solar média no local de instalação, o número médio de horas de luz solar por dia, o rendimento e a potência a debitar.

3.14 Distinguir os mecanismos de condução e de convecção.

3.15 Associar a condutividade térmica à taxa temporal de transferência de energia como calor por condução, distinguindo materiais bons e maus condutores do calor.

3.16 Interpretar o significado de capacidade térmica mássica, aplicando-o na explicação de fenómenos do quotidiano.

3.17 Interpretar o conceito de variação de entalpias de fusão e de vaporização.

3.18 Determinar a variação de energia interna de um sistema num aquecimento ou arrefecimento, aplicando os conceitos de capacidade térmica mássica e de variação de entalpia (de fusão ou de vaporização), interpretando o sinal dessa variação.

3.19 Interpretar o funcionamento de um coletor solar, a partir de informação selecionada, e identificar as suas aplicações.

3.20 Interpretar e aplicar a Primeira Lei da Termodinâmica.

3.21 Associar a Segunda Lei da Termodinâmica ao sentido em que os processos ocorrem espontaneamente, diminuindo a energia útil.

3.22 Efetuar balanços energéticos e calcular rendimentos.
11.º ano – Física

Mecânica

Tempo, posição e velocidade

1. Compreender diferentes descrições do movimento usando grandezas cinemáticas.

1.1 Identificar a posição de uma partícula num referencial unidimensional.
1.2 Medir posições e tempos em movimentos retilíneos reais recorrendo a sistemas de aquisição automática de dados e interpretar os respetivos gráficos posição-tempo.
1.3 Descrever um movimento retilíneo a partir de um gráfico posição-tempo.
1.4 Definir deslocamento, distinguindo-o de distância percorrida sobre a trajetória (espaço percorrido), e determinar a sua componente escalar num movimento retilíneo.
1.5 Definir velocidade média, distinguindo-a de rapidez média, e determinar a sua componente escalar num movimento retilíneo.
1.6 Indicar que num movimento se pode definir velocidade em cada instante e associá-la a uma grandeza vetorial que indica a direção e sentido do movimento e a rapidez com que o corpo está a mudar de posição.
1.7 Representar o vetor velocidade em diferentes instantes em trajetórias retilíneas e curvilíneas.
1.8 Concluir que se a velocidade for constante, num dado intervalo de tempo, ela será igual à velocidade média nesse intervalo de tempo e o movimento terá de ser retilíneo.
1.9 Associar o valor positivo ou negativo da componente escalar da velocidade ao sentido positivo ou negativo num movimento retilíneo.
1.10 Determinar a componente escalar da velocidade média a partir de gráficos posição-tempo de movimentos retilíneos.
1.11 Associar a componente escalar da velocidade num dado instante ao declive da reta tangente à curva no gráfico posição-tempo nesse instante.
1.12 Interpretar como varia a componente escalar da velocidade a partir de gráficos posição-tempo de movimentos retilíneos.
1.13 Descrever um movimento retilíneo a partir de um gráfico velocidade-tempo.
1.14 Classificar movimentos retilíneos em uniformes, acelerados ou retardados a partir da variação dos módulos da velocidade num intervalo de tempo, ou da representação vetorial de velocidades ou de gráficos velocidade-tempo.
1.15 Determinar a componente escalar de um deslocamento ou uma distância percorrida sobre a trajetória, para movimentos retilíneos, a partir de gráficos velocidade-tempo.
1.16 Associar um gráfico velocidade-tempo ao correspondente gráfico posição-tempo.

Interações e seus efeitos

2. Compreender a ação das forças, prever os seus efeitos usando as leis de Newton da dinâmica e aplicar essas leis na descrição e interpretação de movimentos.

2.1 Associar o conceito de força a uma interação entre dois corpos.
2.2 Identificar as quatro interações fundamentais na Natureza e associá-las a ordens de grandeza relativa dos respetivos alcances e intensidades.
2.3 Enunciar e interpretar a Lei da Gravitação Universal.
2.4 Relacionar as forças que atuam em corpos em interação com base na Terceira Lei de Newton.
2.5 Associar o peso de um corpo à força de atração gravítica exercida pelo planeta onde o corpo se encontra, identificando o par ação-reação.
2.6 Identificar e representar as forças que atuam em corpos em diversas situações, incluindo os pares ação-reação.
2.7 Identificar um corpo em queda livre como aquele que está sujeito apenas à força gravítica, designando-o por «grave».
2.8 Identificar a variação de velocidade, em módulo ou em direção, como um dos efeitos de uma força.
2.9 Associar o efeito da componente de uma força que atua num corpo, segundo a direção da velocidade, à alteração do módulo da velocidade, aumentando-o ou diminuindo-o.
2.10 Associar o efeito da componente de uma força que atua num corpo, segundo a direção perpendicular à velocidade, à alteração da direção da velocidade.
2.11 Determinar a componente escalar da aceleração média num movimento retilíneo a partir de componentes escalares da velocidade e intervalos de tempo, ou de um gráfico velocidade-tempo, e resolver problemas que usem esta grandeza.
2.12 Associar a grandeza aceleração ao modo como varia instantaneamente a velocidade.
2.13 Concluir que, se a aceleração for constante, num dado intervalo de tempo, ela será igual à aceleração média nesse intervalo de tempo.
2.14 Designar por aceleração gravítica a aceleração a que estão sujeitos os corpos em queda livre, associando a variação da sua velocidade à ação da força gravítica.
2.15 Definir movimento retilíneo uniformemente variado (acelerado e retardado).
2.16 Indicar que a velocidade e a aceleração apenas têm a mesma direção em cada instante nos movimentos retilíneos.
2.17 Justificar que um movimento retilíneo pode não ter aceleração mas que um movimento curvilíneo tem sempre aceleração.
2.18 Relacionar para movimentos retilíneos acelerados e retardados, os sentidos dos vetores aceleração e velocidade num certo instante.
2.19 Interpretar gráficos força-aceleração e relacionar gráficos força-tempo e aceleração-tempo.
2.20 Enunciar, interpretar e aplicar a Segunda Lei de Newton a situações de movimento retilíneo ou de repouso de um corpo (com e sem força de atrito).
2.21 Representar os vetores resultante das forças, aceleração e velocidade, num certo instante, para um movimento retilíneo.
2.22 Determinar a aceleração gravítica a partir da Lei da Gravitação Universal e da Segunda Lei de Newton.
2.23 Enunciar e aplicar a Primeira Lei de Newton, interpretando-a com base na Segunda Lei, e associar a inércia de um corpo à respetiva massa.
2.24 Indicar o contributo de Galileu para a formulação da Lei da Inércia e relacioná-lo com as conceções de movimento de Aristóteles.
Forças e movimentos

3. Caracterizar movimentos retilíneos (uniformes, uniformemente variados e variados, designadamente os retilíneos de queda à superfície da Terra com resistência do ar desprezável ou apreciável) e movimentos circulares uniformes, reconhecendo que só é possível descrevê-los tendo em conta a resultante das forças e as condições iniciais.

3.1 Determinar a aceleração de um grave a partir do gráfico velocidade-tempo de um movimento real, obtendo a equação das velocidades (regressão linear), e concluir que o movimento é uniformemente variado (retardado na subida e acelerado na descida).

3.2 Interpretar gráficos posição-tempo e velocidade-tempo para movimentos retilíneos uniformemente variados.

3.3 Interpretar e aplicar as equações do movimento uniformemente variado conhecidas a resultante das forças e as condições iniciais (velocidade e posição iniciais).

3.4 Concluir, a partir das equações de movimento, que o tempo de queda de corpos em queda livre, com as mesmas condições iniciais, é independente da massa e da forma dos corpos.

3.5 Interpretar os gráficos posição-tempo e velocidade-tempo do movimento de um corpo em queda vertical com resistência do ar apreciável, identificando os tipos de movimento: retilíneo acelerado (não uniformemente) e retilíneo uniforme.

3.6 Definir velocidade terminal num movimento de queda com resistência do ar apreciável e determinar essa velocidade a partir dos gráficos posição-tempo ou velocidade-tempo de um movimento real por seleção do intervalo de tempo adequado.

3.7 Concluir, a partir do gráfico velocidade-tempo, como varia a aceleração e a resultante das forças ao longo do tempo no movimento de um paraquedista, relacionando as intensidades das forças nele aplicadas, e identificar as velocidades terminais.

3.8 Interpretar gráficos posição-tempo e velocidade-tempo em situações de movimento retilíneo e uniforme e estabelecer as respetivas expressões analíticas a partir das condições iniciais.

3.9 Conduzir, para movimentos retilíneos uniformemente variados e uniformes, o gráfico posição-tempo a partir do gráfico velocidade-tempo e da posição inicial.

3.10 Interpretar movimentos retilíneos em planos inclinados ou horizontais, aplicando as Leis de Newton e obtendo as equações do movimento, ou analisando o movimento do ponto de vista energético.

3.11 Associar a variação exclusiva da direção da velocidade de um corpo ao efeito da atuação de uma força perpendicular à trajetória em cada ponto, interpretando o facto de a velocidade de um satélite, em órbita circular, não variar em módulo.

3.12 Indicar que a força gravítica e a velocidade de um satélite permitem explicar por que razão a Lua não colide com a Terra assim como a forma das órbitas dos planetas em volta do Sol e dos satélites em volta dos planetas.

3.13 Caracterizar o movimento circular e uniforme relacionando as direções da resultante das forças, da aceleração e da velocidade, indicando o sentido da resultante das forças e da aceleração e identificando como constantes ao longo do tempo os módulos da resultante das forças, da aceleração e da velocidade.
3.14 Identificar exemplos de movimento circular uniforme.
3.15 Identificar o movimento circular e uniforme com um movimento periódico, descrevê-lo indicando o seu período e frequência, definir módulo da velocidade angular e relacioná-lo com o período (ou com a frequência) e com o módulo da velocidade.
3.16 Relacionar quantitativamente o módulo da aceleração de um corpo em movimento circular e uniforme com o módulo da sua velocidade (ou da velocidade angular) e com o raio da circunferência descrita.
3.17 Determinar o módulo da velocidade de um satélite para que ele descreva uma trajetória circular com um determinado raio.
3.18 Indicar algumas aplicações de satélites terrestres e as condições para que um satélite seja geoestacionário.
3.19 Calcular a altitude de um satélite terrestre, em órbita circular, a partir do seu período orbital (ou vice-versa).

Ondas e eletromagnetismo

Sinais e ondas

1. Interpretar um fenómeno ondulatório como a propagação de uma perturbação com uma certa velocidade; interpretar a periodicidade temporal e espacial de ondas periódicas harmónicas e complexas, aplicando esse conhecimento ao estudo do som.

1.1 Associar um sinal a uma perturbação que ocorre localmente, de curta ou longa duração, e que pode ser usado para comunicar, identificando exemplos.
1.2 Identificar uma onda com a propagação de um sinal num meio, com transporte de energia, e cuja velocidade de propagação depende de características do meio.
1.3 Distinguir ondas longitudinais de transversais, dando exemplos.
1.4 Distinguir ondas mecânicas de ondas eletromagnéticas.
1.5 Identificar uma onda periódica como a que resulta da emissão repetida de um sinal em intervalos regulares.
1.6 Associar um sinal harmónico (sinusoidal) ao sinal descrito por uma função do tipo $y = A \sin(\omega t)$, definindo amplitude de oscilação e frequência angular e relacionando a frequência angular com o período e com a frequência.
1.7 Indicar que a energia de um sinal harmónico depende da amplitude de oscilação e da frequência do sinal.
1.8 Associar uma onda harmónica (ou sinusoidal) à propagação de um sinal harmónico no espaço, indicando que a frequência de vibração não se altera e depende apenas da frequência da fonte.
1.9 Concluir, a partir de representações de ondas, que uma onda complexa pode ser descrita como a sobreposição de ondas harmónicas.
1.10 Associar período e comprimento de onda à periodicidade temporal e à periodicidade espacial da onda, respetivamente.
1.11 Relacionar frequência, comprimento de onda e velocidade de propagação e concluir que a frequência e o comprimento de onda são inversamente proporcionais quando a
velocidade de propagação de uma onda é constante, ou seja, quando ela se propaga num meio homogêneo.

1.12 Identificar diferentes pontos do espaço no mesmo estado de vibração na representação gráfica de uma onda num determinado instante.

1.13 Interpretar um sinal sonoro no ar como resultado da vibração do meio, de cuja propagação resulta uma onda longitudinal que se forma por sucessivas compressões e rarefações do meio (variações de pressão).

1.14 Identificar um sinal sonoro sinusoidal com a variação temporal da pressão num ponto do meio, descrita por \(P(t) = P_0 \sin(\omega t) \), associando a amplitude de pressão, \(P_0 \), à intensidade do som originado e a frequência à altura do som.

1.15 Justificar, por comparação das direções de vibração e propagação, que, nos meios líquidos ou gasosos, as ondas sonoras são longitudinais.

1.16 Associar os termos sons puros e sons complexos respetivamente a ondas sonoras harmónicas e complexas.

1.17 Aplicar os conceitos de frequência, amplitude, comprimento de onda e velocidade de propagação na resolução de questões sobre ondas harmónicas, incluindo interpretação gráfica.

1.18 Indicar que um microfone transforma um sinal mecânico num sinal elétrico e que um altifalante transforma um sinal elétrico num sinal sonoro.

Eletromagnetismo

2. Identificar as origens de campos elétricos e magnéticos, caracterizando-os através de linhas de campo, reconhecer as condições para a produção de correntes induzidas, interpretando a produção industrial de corrente alternada e as condições de transporte da energia elétrica; identificar alguns marcos importantes na história do eletromagnetismo.

2.1 Interpretar o aparecimento de corpos carregados eletricamente a partir da transferência de elétrões e da conservação da carga.

2.2 Identificar um campo elétrico pela ação sobre cargas elétricas, que se manifesta por forças elétricas.

2.3 Indicar que um campo elétrico tem origem em cargas elétricas.

2.4 Identificar a direção e o sentido do campo elétrico num dado ponto quando a origem é uma carga pontual (positiva ou negativa) e comparar a intensidade do campo em diferentes pontos e indicar a sua unidade SI.

2.5 Identificar informação fornecida por linhas de campo elétrico criado por duas cargas pontuais quaisquer ou por duas placas planas e paralelas com cargas simétricas (condensador plano), concluindo sobre a variação da intensidade do campo nessa região e a direção e sentido do campo num certo ponto.

2.6 Relacionar a direção e o sentido do campo elétrico num ponto com a direção e sentido da força elétrica que atua numa carga pontual colocada nesse ponto.

2.7 Identificar um campo magnético pela sua ação sobre ímanes, que se manifesta através de forças magnéticas.
2.8 Indicar que um campo magnético pode ter origem em ímanes ou em correntes elétricas e descrever a experiência de Oersted, identificando-a como a primeira prova experimental da ligação entre eletricidade e magnetismo.

2.9 Caracterizar qualitativamente a grandeza campo magnético num ponto, a partir da representação de linhas de campo quando a origem é um íman, uma corrente elétrica num fio retílineo, numa espira circular ou num solenoide, e indicar a sua unidade SI.

2.10 Identificar campos uniformes (elétricos ou magnéticos) a partir das linhas de campo.

2.11 Definir fluxo magnético que atravessa uma espira, identificando as condições que o tornam máximo ou nulo, indicar a sua unidade SI e determinar fluxos magnéticos para uma espira e várias espiras iguais e paralelas.

2.12 Identificar condições em que aparecem correntes induzidas (fenómeno de indução eletromagnética) e interpretar e aplicar a Lei de Faraday.

2.13 Interpretar a produção de corrente elétrica alternada em centrais elétricas com base na indução eletromagnética e justificar a vantagem de aumentar a tensão elétrica para o transporte da energia elétrica.

2.14 Identificar a função de um transformador, relacionar as tensões do primário e do secundário com o respetivo número de espiras e justificar o seu princípio de funcionamento no fenómeno de indução eletromagnética.

Ondas eletromagnéticas

3. Compreender a produção de ondas eletromagnéticas e caracterizar fenómenos ondulatórios a elas associados; fundamentar a sua utilização, designadamente nas comunicações e no conhecimento da evolução do Universo.

3.1 Associar a origem de uma onda eletromagnética (radiação eletromagnética ou luz) à oscilação de uma carga elétrica, identificando a frequência da onda com a frequência de oscilação da carga.

3.2 Indicar que uma onda eletromagnética resulta da propagação de campos elétrico e magnético variáveis, perpendiculares entre si e perpendiculares à direção de propagação da onda.

3.3 Identificar o contributo de Maxwell para a teoria das ondas eletromagnéticas e de Hertz para a produção e a detecção de ondas eletromagnéticas com grande comprimento de onda.

3.4 Interpretar a repartição da energia de uma onda eletromagnética que incide na superfície de separação de dois meios (parte refletida, parte transmitida e parte absorvida) com base na conservação da energia, indicando que essa repartição depende da frequência da onda incidente, da inclinação da luz e dos materiais.

3.5 Aplicar a repartição da energia à radiação solar incidente na Terra, assim como a transparência ou opacidade da atmosfera a ondas eletromagnéticas com certas frequências, para justificar a fração da radiação solar que é refletida (albedo) e a que
chega à superfície terrestre e a importância (biológica, tecnológica) desta na vida do planeta.

3.6 Enunciar e aplicar as Leis da Reflexão da Luz.

3.7 Caracterizar a reflexão de uma onda eletromagnética, comparando as ondas incidente e refletida usando a frequência, velocidade, comprimento de onda e intensidade, e identificar aplicações da reflexão (radar, leitura de códigos de barras, etc.).

3.8 Determinar índices de refração e interpretar o seu significado.

3.9 Caracterizar a refração de uma onda, comparando as ondas incidente e refratada usando a frequência, velocidade, comprimento de onda e intensidade.

3.10 Estabelecer, no fenômeno de refração, relações entre índices de refração e velocidades de propagação, índices de refração e comprimentos de onda, velocidades de propagação e comprimentos de onda.

3.11 Enunciar e aplicar as Leis da Refração da Luz.

3.12 Explicitar as condições para que ocorra reflexão total da luz, exprimindo-as quer em função do índice de refração quer em função da velocidade de propagação, e calcular ângulos limite.

3.13 Justificar a constituição de uma fibra ótica com base nas diferenças de índices de refração dos materiais que a constituem e na elevada transparência do meio onde a luz se propaga de modo a evitar uma acentuada atenuação do sinal, dando exemplos de aplicação.

3.14 Descrever o fenômeno da difração e as condições em que pode ocorrer.

3.15 Fundamentar a utilização de bandas de frequências adequadas (ondas de rádio e micro-ondas) nas comunicações, nomeadamente por telemóvel e via satélite (incluindo o GPS).

3.16 Descrever qualitativamente o efeito Doppler e interpretar o desvio no espetro para comprimentos de onda maiores como resultado do afastamento entre emissor e receptor, exemplificando com o som e com a luz.

3.17 Indicar que as ondas eletromagnéticas possibilitam o conhecimento da evolução do Universo, descrito pela teoria do big bang, segundo a qual o Universo tem estado em expansão desde o seu início.

3.18 Identificar como evidências principais do big bang o afastamento das galáxias, detetado pelo desvio para o vermelho nos seus espetros de emissão (equivalente ao efeito Doppler) e a existência de radiação de fundo, que se espalhou pelo Universo quando se formaram os primeiros átomos (principalmente hidrogénio e hélio) no Universo primordial.
11.º ano – Química

Aspetos quantitativos das reações químicas

1. Compreender as relações quantitativas nas reações químicas e aplicá-las na determinação da eficiência dessas reações.

1.1 Interpretar o significado das equações químicas em termos de quantidade de matéria e relacionar o respetivo acerto com a conservação da massa (Lei de Lavoisier).
1.2 Efetuar cálculos estequiométricos com base em equações químicas.
1.3 Identificar reagente limitante e reagente em excesso numa reação química.
1.4 Interpretar o grau de pureza de uma amostra.
1.5 Indicar que os reagentes podem apresentar diferentes graus de pureza e que devem ser escolhidos consoante as finalidades de uso e custo.
1.6 Distinguir reações completas de incompletas.
1.7 Efetuar cálculos estequiométricos envolvendo reagente limitante/em excesso, rendimento da reação e grau de pureza dos reagentes.
1.8 Associar “economia atómica percentual” à razão entre a massa de átomos de reagentes que são incorporados no produto desejado e a massa total de átomos nos reagentes, expressa em percentagem.
1.9 Comparar reações químicas do ponto de vista da química verde tendo em conta vários fatores como: economia atómica, redução dos resíduos, produtos indesejados, escolha de reagentes e processos menos poluentes.

Estado de equilíbrio e extensão das reações químicas

2. Reconhecer a ocorrência de reações químicas incompletas e de equilíbrio químico e usar o Princípio de Le Châtelier para prever a evolução de sistemas químicos.

2.1 Interpretar a ocorrência de reações químicas incompletas numa base molecular: ocorrência simultânea das reações direta e inversa.
2.2 Associar estado de equilíbrio químico a qualquer estado de um sistema fechado em que, macroscopicamente, não se registam variações de propriedades físicas e químicas.
2.3 Interpretar gráficos que traduzem a variação da concentração (ou da quantidade de matéria) em função no tempo, para cada um dos componentes da mistura reacional, e da evolução temporal da velocidade das reações direta e inversa.
2.4 Associar equilíbrio químico homogéneo ao estado de equilíbrio que se verifica numa mistura reacional numa só fase.
2.5 Identificar equilíbrios homogéneos em diferentes contextos, por exemplo, a reação de síntese do amoniaco.
2.6 Escrever expressões matemáticas que traduzam a constante de equilíbrio, usando concentrações.
2.7 Concluir, a partir de valores de concentrações, que o valor da constante de equilíbrio é o mesmo para todos os estados de equilíbrio de um sistema químico, à mesma temperatura.

2.8 Relacionar a extensão de uma reação, a uma certa temperatura, com o valor da constante de equilíbrio dessa reação, a essa temperatura.

2.9 Concluir, a partir de valores de concentrações em equilíbrio, que o valor da constante de equilíbrio, para uma reação química, depende da temperatura.

2.10 Relacionar o valor da constante de equilíbrio da reação direta com o da constante de equilíbrio da reação inversa.

2.11 Distinguir entre constante de equilíbrio e quociente da reação em situações de não equilíbrio.

2.12 Prever o sentido dominante da reação com base na comparação do valor do quociente da reação, num determinado instante, com o valor da constante de equilíbrio da reação química considerada à temperatura a que decorre a reação.

2.13 Aplicar expressões da constante de equilíbrio e do quociente da reação na resolução de questões envolvendo cálculos.

2.14 Indicar os fatores que podem alterar o estado de equilíbrio de uma mistura reacional (pressão, em sistemas gasosos, temperatura e concentração).

2.15 Interpretar o efeito da variação da concentração de um reagente ou produto num sistema inicialmente em equilíbrio, por comparação do quociente da reação com a constante de equilíbrio, a temperatura constante.

2.16 Identificar o Princípio de Le Châtelier como uma regra que permite prever a evolução de um sistema químico quando ocorre variação de um dos fatores que pode afetar o estado de equilíbrio – concentração, pressão, volume ou temperatura.

2.17 Aplicar o Princípio de Le Châtelier à síntese do amoníaco e a outros processos industriais e justificar aspectos de compromisso relacionados com temperatura, pressão e uso de catalisadores.

Reações em sistemas aquosos

Reações ácido-base

1. Aplicar a teoria protónica (de Brönsted e Lowry) para reconhecer substâncias que podem atuar como ácidos ou bases e determinar o pH das suas soluções aquosas.

1.1 Identificar marcos históricos importantes na interpretação de fenómenos ácido-base, culminando na definição de ácido e base de acordo com Brönsted e Lowry.

1.2 Interpretar reações ácido-base como reações de transferência de protões.

1.3 Relacionar quantitativamente a concentração hidrogeniónica de uma solução e o seu valor de pH.

1.4 Caracterizar a autoionização da água fazendo referência às espécies químicas envolvidas nesta reação e à sua extensão.
1.5 Relacionar a extensão da reação da autoionização da água com o produto iônico da água, identificando-o com a constante de equilíbrio para essa reação.

1.6 Relacionar as concentrações do ião H$_3$O$^+$ e do ião OH$^-$ resultantes da autoionização da água.

1.7 Prever, com base no Princípio de Le Châtelier, o efeito da variação da temperatura na autoionização da água.

1.8 Relacionar as concentrações dos íons H$_3$O$^+$ e OH$^-$, bem como os valores de pH e pOH, para soluções ácidas, básicas e neutras.

1.9 Explicitar os significados de ionização (de ácidos e algumas bases) e de dissociação de sais (incluindo hidróxidos), diferenciando ionização de dissociação.

1.10 Explicar o que é um par conjugado ácido-base, dando exemplos de pares conjugados ácido-base.

1.11 Interpretar o significado de espécie química anfotérica.

1.12 Escrever equações químicas que representam reações de ionização de um ácido, ou de uma base, e as respetivas expressões das constantes de acidez ou de basicidade.

1.13 Relacionar os valores das constantes de acidez de diferentes ácidos (ou as constantes de basicidade de diferentes bases) com a extensão das respetivas ionizações.

1.14 Explicar por que razão as soluções de ácidos fracos têm valores de pH mais elevados do que as das soluções de ácidos fortes de igual concentração.

1.15 Determinar o pH de soluções de ácidos (ou bases) fortes a partir da respetiva concentração e vice-versa.

1.16 Determinar concentrações de equilíbrio das espécies químicas envolvidas na ionização de ácidos monoproticos fracos (ou de bases) a partir do pH, constante de acidez (ou basicidade) e estequiometria da reação.

1.17 Relacionar as constantes de acidez e de basicidade para um par conjugado ácido-base.

1.18 Interpretar o significado de neutralização associando-o à reação entre os íons H$_3$O$^+$ e OH$^-$ durante uma reação ácido-base.

1.19 Associar o ponto de equivalência de uma titulação à situação em que nenhum dos reagentes se encontra em excesso.

1.20 Associar indicador ácido-base a um par conjugado ácido-base em que as formas ácidas e básicas são responsáveis por cores diferentes.

1.21 Interpretar o caráter ácido, básico ou neutro de soluções aquosas de sais com base nos valores das constantes de acidez ou de basicidade dos íons do sal em solução.

1.22 Interpretar a acidez da chuva normal com base na dissolução do dióxido de carbono presente na atmosfera.

1.23 Interpretar a formação de chuvas ácidas devido à presença de poluentes na atmosfera (SOx, NOx), assim como processos de eliminação destes poluentes, com base nas correspondentes reações químicas.

1.24 Explicar as consequências das chuvas ácidas sobre construções de calcário e mármore, interpretando as equações químicas correspondentes.
Reações de oxidação-redução

2. Reconhecer as reações de oxidação-redução como reações de transferência de eletrões e interpretar a ação de ácidos sobre alguns metais como um processo de oxidação-redução.

2.1 Associar oxidação à cedência de eletrões e redução ao ganho de eletrões.
2.2 Interpretar reações de oxidação-redução como reações de transferência de eletrões.
2.3 Identificar, numa reação de oxidação-redução, as espécies químicas oxidada (redutor) e reduzida (oxidante).
2.4 Identificar estados de oxidação de um elemento em substâncias elementares, compostas e em espécies iónicas a partir do cálculo do seu número de oxidação.
2.5 Usar o conceito de número de oxidação na identificação de reações de oxidação-redução.
2.6 Acertar equações químicas de oxidação-redução em casos simples.
2.7 Interpretar uma reação de oxidação-redução como um processo em que ocorrem simultaneamente uma oxidação e uma redução, escrevendo as semiequações correspondentes.
2.8 Associar a ocorrência de uma reação ácido-metal à oxidação do metal com redução simultânea do ião hidrogénio.
2.9 Comparar o poder redutor de alguns metais.
2.10 Prever se uma reação de oxidação-redução ocorre usando uma série eletroquímica adequada.
2.11 Interpretar a corrosão dos metais como um processo de oxidação-redução.

Soluções e equilíbrio de solubilidade

3. Compreender a dissolução de sais e reconhecer que a mineralização das águas se relaciona com processos de dissolução e equilíbrios de solubilidade.

3.1 Relacionar a composição química da água do mar com a dissolução de sais e do dióxido de carbono da atmosfera.
3.2 Caraterizar o fenómeno da dissolução como uma mistura espontânea de substâncias que pode ser relacionado com as interações entre as espécies químicas do soluto e do solvente.
3.3 Indicar formas de controlar o tempo de dissolução de um soluto (estado de divisão e agitação) mantendo a temperatura e a pressão constantes.
3.4 Definir solubilidade em termos de concentração de solução saturada e de massa de soluto dissolvido em 100 g de solvente.
3.5 Classificar as soluções de um dado soluto em não saturadas, saturadas e sobressaturadas, com base na respetiva solubilidade, a uma determinada temperatura.
3.6 Interpretar gráficos de solubilidade em função da temperatura.
3.7 Identificar o equilíbrio químico que se estabelece entre um sal e uma sua solução saturada como um equilíbrio químico heterogéneo, designando-o por equilíbrio de solubilidade.
3.8 Escrever equações químicas que traduzem equilíbrios de solubilidade e escrever as correspondentes expressões da constante de produto de solubilidade.

3.9 Relacionar a constante de produto de solubilidade de um sal com a respetiva solubilidade, na ausência de outros equilíbrios que afetem essa solubilidade.

3.10 Interpretar a possibilidade de formação de um precipitado, com base nas concentrações de íons presentes em solução e nos valores de produtos de solubilidade.

3.11 Interpretar, com base no Princípio de Le Châtelier, o efeito do ião-comum na solubilidade de sais em água.

3.12 Interpretar, com base no Princípio de Le Châtelier, a solubilização de alguns sais por soluções ácidas.

3.13 Interpretar, com base no Princípio de Le Châtelier, a solubilização de alguns sais através da formação de íons complexos.

3.14 Associar a dureza total de uma água à concentração de catiões cálcio e magnésio.

3.15 Interpretar, com base em informação selecionada, processos para minimizar a dureza das águas.

3.16 Interpretar, com base em informação selecionada, a utilização de reações de precipitação na remoção de poluentes de águas.
Componente prática-laboratorial

Metas transversais a todas as atividades

Aprendizagem do tipo processual:

1. Identificar material e equipamento de laboratório e manuseá-lo corretamente, respeitando regras de segurança e instruções recebidas.
2. Identificar simbologia em laboratórios.
3. Identificar equipamento de proteção individual.
4. Adotar as medidas de proteção adequadas a operações laboratoriais, com base em informação de segurança e instruções recebidas.
5. Atuar corretamente em caso de acidente no laboratório tendo em conta procedimentos de alerta e utilização de equipamento de salvamento.
6. Selecionar material de laboratório adequado a um trabalho laboratorial.
7. Construir uma montagem laboratorial a partir de um esquema ou de uma descrição.
8. Executar corretamente técnicas laboratoriais.
9. Operacionalizar o controlo de uma variável.
10. Identificar aparelhos de medida, analógicos e digitais, o seu intervalo de funcionamento e a respetiva incerteza de leitura.
11. Efetuar medições utilizando material de laboratório analógico, digital ou de aquisição automática de dados.
12. Representar um conjunto de medidas experimentais em tabela, associando-lhes as respetivas incertezas de leitura dos aparelhos de medida utilizados.

Aprendizagem do tipo conceptual:

1. Identificar o objetivo de um trabalho prático.
2. Identificar o referencial teórico no qual se baseia o procedimento utilizado num trabalho prático, incluindo regras de segurança específicas.
3. Interpretar e seguir um protocolo.
4. Descrever o procedimento que permite dar resposta ao objetivo de um trabalho prático.
5. Conceber um procedimento capaz de validar uma dada hipótese, ou estabelecer relações entre variáveis, e decidir sobre as variáveis a controlar.
6. Identificar a influência de uma dada grandeza num fenómeno físico através de controlo de variáveis.
7. Conceber uma tabela de registo de dados adequada ao procedimento.
8. Representar esquemas de montagens.
9. Utilizar regras de contagem de algarismos significativos.
10. Identificar e comparar ordens de grandeza.
11. Distinguir erros aleatórios de erros sistemáticos.
12. Indicar a medida de uma grandeza numa única medição direta, atendendo à incerteza experimental associada à leitura no aparelho de medida.
13. Indicar a medida de uma grandeza quando há um conjunto de medições diretas, efetuadas nas mesmas condições, tomando como valor mais provável o valor médio.
14. Calcular a incerteza absoluta do valor mais provável de um conjunto de medições diretas (o maior dos desvios absolutos), assim como a incerteza relativa em percentagem (desvio percentual), e indicar a medida da grandeza.
15. Associar a precisão das medidas à sua maior ou menor dispersão, quando há um conjunto de medições diretas, e aos erros aleatórios.
16. Determinar o erro percentual associado a um resultado experimental quando há um valor de referência.
17. Associar a exatidão de um resultado à maior ou menor proximidade a um valor de referência e aos erros sistemáticos, relacionando-a com o erro percentual.
18. Construir gráficos a partir de listas de dados, utilizando papel ou suportes digitais.
19. Interpretar representações gráficas, estabelecendo relações entre as grandezas.
20. Aplicar conhecimentos de estatística no tratamento de dados experimentais em modelos lineares, identificando as grandezas físicas na equação da reta de regressão.
21. Determinar valores de grandezas, não obtidos experimentalmente, a partir da equação de uma reta de regressão.
22. Identificar erros que permitam justificar a baixa precisão das medições ou a baixa exatidão do resultado.
23. Avaliar a credibilidade de um resultado experimental, confrontando-o com previsões do modelo teórico, e discutir os seus limites de validade.
24. Generalizar interpretações baseadas em resultados experimentais para explicar outros fenómenos que tenham o mesmo fundamento teórico.
25. Elaborar um relatório, ou síntese, sobre uma atividade prática, em formatos diversos.

Nas páginas seguintes apresentam-se as metas específicas para cada atividade laboratorial, por ano e por componente, e, em quadro, a súmula das metas transversais referentes a essas atividades.
Metas específicas e transversais das atividades laboratoriais

10.º ano – Química

AL 1.1. Volume e número de moléculas de uma gota de água

Objetivo geral: Medir o volume e a massa de uma gota de água e determinar o número de moléculas de água na gota.

1. Medir a massa e o volume de um dado número de gotas de água, selecionando os instrumentos de medição mais adequados.
2. Apresentar os resultados das medições da massa e do volume das gotas de água, atendendo à incerteza de leitura e ao número de algarismos significativos.
3. Determinar a massa e o volume de uma gota de água e indicar a medida com o número adequado de algarismos significativos.
4. Calcular o número de moléculas de água que existem numa gota e indicar o resultado com o número adequado de algarismos significativos.

AL 1.2. Teste de chama

Objetivo geral: Identificar elementos químicos em amostras de sais usando testes de chama.

1. Identificar a presença de um dado elemento químico através da coloração de uma chama quando nela se coloca uma amostra de sal.
2. Indicar limitações do ensaio de chama relacionadas com a temperatura da chama e com a natureza dos elementos químicos na amostra.
3. Interpretar informação de segurança presente no rótulo de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas.
4. Interpretar os resultados obtidos em testes de chama.

AL 1.3. Densidade relativa de metais

Objetivo geral: Determinar a densidade relativa de metais por picnometria.

1. Definir densidade relativa e relacioná-la com a massa volúmica.
2. Identificar a densidade relativa como uma propriedade física de substâncias.
3. Interpretar e utilizar um procedimento que permita determinar a densidade relativa de um metal por picnometria.
4. Determinar a densidade relativa do metal.
5. Indicar o significado do valor obtido para a densidade relativa do metal.
6. Determinar o erro percentual do resultado obtido para a densidade relativa do metal e relacioná-lo com a exatidão desse resultado.
7. Indicar erros que possam ter afetado o resultado obtido.

AL 2.1. Miscibilidade de líquidos

Objetivo geral: Prever e avaliar a miscibilidade de líquidos.

1. Prever se dois líquidos são miscíveis ou imiscíveis, tendo como único critério o tipo de ligações intermoleculares predominantes em cada um.
2. Identificar e controlar variáveis que afetam a miscibilidade de líquidos.
3. Interpretar informação de segurança nos rótulos de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas.
4. Descrever e realizar um procedimento que permita avaliar a miscibilidade de líquidos.
5. Relacionar a miscibilidade dos líquidos em estudo com os tipos de interações entre as respetivas unidades estruturais.

AL 2.2. Soluções a partir de solutos sólidos

Objetivo geral: Preparar uma solução aquosa a partir de um soluto sólido.

1. Efetuar cálculos necessários à preparação de soluções a partir de um soluto sólido.
2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução a partir de um soluto sólido.
3. Medir a massa de sólidos em pó, granulados ou em cristais, usando uma balança digital, e apresentar o resultado da medição atendendo à incerteza de leitura e ao número de algarismos significativos.
4. Aplicar técnicas de transferência de sólidos e líquidos.
5. Preparar uma solução com um dado volume e concentração.
6. Armazenar soluções em recipiente apropriado sem as contaminar ou sem alterar a sua concentração.
7. Indicar erros que possam ter afetado as medições efetuadas.

AL 2.3. Diluição de soluções

Objetivo geral: Preparar soluções aquosas por diluição.

1. Efetuar cálculos necessários à preparação de soluções por diluição, em particular utilizando o fator de diluição.
2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução por diluição.
3. Distinguir pipetas volumétricas de pipetas graduadas comparando, para volumes iguais, a incerteza de leitura de ambas.
4. Interpretar inscrições em instrumentos de medição de volume.
5. Medir volumes de líquidos com pipetas, usando a técnica adequada.
6. Apresentar o resultado da medição do volume de solução com a pipeta atendendo à incerteza de leitura e ao número de algarismos significativos.
7. Preparar uma solução com um dado volume e concentração a partir de uma solução mais concentrada.

AL 2.4. Reação fotoquímica

Objetivo geral: Investigar o efeito da luz sobre o cloreto de prata.

1. Interpretar e realizar procedimentos que, em pequena escala e controlando variáveis, permitam estudar o efeito da luz sobre cloreto de prata.
2. Interpretar os resultados obtidos escrevendo equações químicas correspondentes.
3. Descrever e comparar o efeito de diferentes tipos de luz visível sobre o cloreto de prata.
Metas transversais

<table>
<thead>
<tr>
<th>Aprendizagens do tipo:</th>
<th>AL 1.1.</th>
<th>AL 1.2.</th>
<th>AL 1.3.</th>
<th>AL 2.1.</th>
<th>AL 2.2.</th>
<th>AL 2.3.</th>
<th>AL 2.4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Processual

<table>
<thead>
<tr>
<th>Aprendizagens do tipo:</th>
<th>AL 1.1.</th>
<th>AL 1.2.</th>
<th>AL 1.3.</th>
<th>AL 2.1.</th>
<th>AL 2.2.</th>
<th>AL 2.3.</th>
<th>AL 2.4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
10.º ano – Física

AL 1.1. Movimento num plano inclinado: variação da energia cinética e distância percorrida

Objetivo geral: Estabelecer a relação entre variação de energia cinética e distância percorrida num plano inclinado e utilizar processos de medição e de tratamento estatístico de dados.

1. Identificar medições diretas e indiretas.
2. Realizar medições diretas usando balanças, escalas métricas e cronómetros digitais.
3. Indicar valores de medições diretas para uma única medição (massa, comprimento) e para um conjunto de medições efetuadas nas mesmas condições (intervalos de tempo).
4. Determinar o desvio percentual (incerteza relativa em percentagem) associado à medição de um intervalo de tempo.
5. Medir velocidades e energias cinéticas.

AL 1.2. Movimento vertical de queda e ressalto de uma bola: transformações e transferências de energia

Objetivo geral: Investigar, com base em considerações energéticas (transformações e transferências de energia), o movimento vertical de queda e de ressalto de uma bola.

1. Identificar transferências e transformações de energia no movimento vertical de queda e de ressalto de uma bola.
2. Construir e interpretar o gráfico da primeira altura de ressalto em função da altura de queda, traçar a reta que melhor se ajusta aos dados experimentais e obter a sua equação.
3. Prever, a partir da equação da reta de regressão, a altura do primeiro ressalto para uma altura de queda não medida.
4. Obter as expressões do módulo da velocidade de chegada ao solo e do módulo da velocidade inicial do primeiro ressalto, em função das respetivas alturas, a partir da conservação da energia mecânica.
5. Calcular, para uma dada altura de queda, a diminuição da energia mecânica na colisão, exprimindo essa diminuição em percentagem.
6. Associar uma maior diminuição de energia mecânica numa colisão a menor elasticidade do par de materiais em colisão.
7. Comparar energias dissipadas na colisão de uma mesma bola com diferentes superfícies, ou de bolas diferentes na mesma superfície, a partir dos declives das retas de regressão de gráficos da altura de ressalto em função da altura de queda.
AL 2.1. Características de uma pilha

Objetivo geral: Determinar as características de uma pilha a partir da sua curva característica.

1. Medir diretamente uma força eletromotriz e justificar o procedimento.
2. Montar um circuito elétrico e efetuar medições de diferença de potencial elétrico e de corrente elétrica.
3. Construir e interpretar o gráfico da diferença de potencial elétrico nos terminais de uma pilha em função da corrente elétrica (curva característica), traçar a reta que melhor se ajusta aos dados experimentais e obter a sua equação.
4. Determinar a força eletromotriz e a resistência interna de um gerador a partir da equação da reta de ajuste.
5. Comparar a força eletromotriz e a resistência interna de uma pilha nova e de uma pilha velha.

AL 3.1. Radiação e potência elétrica de um painel fotovoltaico

Objetivo geral: Investigar a influência da irradiação e da diferença de potencial elétrico no rendimento de um painel fotovoltaico.

1. Associar a conversão fotovoltaica à transferência de energia da luz solar para um painel fotovoltaico que se manifesta no aparecimento de uma diferença de potencial elétrico nos seus terminais.
2. Montar um circuito elétrico e efetuar medições de diferença de potencial elétrico e de corrente elétrica.
3. Determinar a potência elétrica fornecida por um painel fotovoltaico.
4. Investigar o efeito da variação da irradiação na potência do painel, concluindo qual é a melhor orientação de um painel fotovoltaico de modo a maximizar a sua potência.
5. Construir e interpretar o gráfico da potência elétrica em função da diferença de potencial elétrico nos terminais de um painel fotovoltaico, determinando a diferença de potencial elétrico que otimiza o seu rendimento.

AL 3.2. Capacidade térmica mássica

Objetivo geral: Determinar a capacidade térmica mássica de um material.

1. Identificar transferências de energia.
2. Estabelecer balanços energéticos em sistemas termodinâmicos, identificando as parcelas que correspondem à energia útil e à energia dissipada.
3. Medir temperaturas e energias fornecidas, ao longo do tempo, num processo de aquecimento.
4. Construir e interpretar o gráfico da variação de temperatura de um material em função da energia fornecida, traçar a reta que melhor se ajusta aos dados experimentais e obter a sua equação.
5. Determinar a capacidade térmica mássica do material a partir da reta de ajuste e avaliar a exatidão do resultado a partir do erro percentual.
AL 3.3. Balanço energético num sistema termodinâmico

Objetivo geral: Estabelecer balanços energéticos e determinar a entalpia de fusão do gelo.

1. Prever a temperatura final da mistura de duas massas de água a temperaturas diferentes e comparar com o valor obtido experimentalmente.
2. Medir massas e temperaturas.
3. Estabelecer balanços energéticos em sistemas termodinâmicos aplicando a Lei da Conservação da Energia, interpretando o sinal positivo ou negativo da variação da energia interna do sistema.
4. Medir a entalpia de fusão do gelo e avaliar a exatidão do resultado a partir do erro percentual.
Metas transversais

<table>
<thead>
<tr>
<th>Aprendizagens do tipo:</th>
<th>AL.1.1</th>
<th>AL.1.2</th>
<th>AL.2.1</th>
<th>AL.3.1</th>
<th>AL.3.2</th>
<th>AL.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
11.º ano – Física

AL 1.1. Queda livre: força gravítica e aceleração da gravidade

Objetivo geral: Determinar a aceleração da gravidade num movimento de queda livre e verificar se depende da massa dos corpos.

1. Medir tempos e determinar velocidades num movimento de queda.
2. Fundamentar o procedimento da determinação de uma velocidade com uma célula fotoelétrica.
3. Determinar a aceleração num movimento de queda (medição indireta), a partir da definição de aceleração média, e compará-la com o valor tabelado para a aceleração da gravidade.
4. Avaliar a exatidão do resultado e calcular o erro percentual, supondo uma queda livre.
5. Concluir que, na queda livre, corpos com massas diferentes experimentam a mesma aceleração.

AL 1.2. Forças nos movimentos retilíneos acelerado e uniforme

Objetivo geral: Identificar forças que atuam sobre um corpo, que se move em linha reta num plano horizontal, e investigar o seu movimento quando sujeito a uma resultante de forças não nula e nula.

1. Identificar as forças que atuam sobre um carrinho que se move num plano horizontal.
2. Medir intervalos de tempo e velocidades.
3. Construir um gráfico da velocidade em função do tempo, identificando tipos de movimento.
4. Concluir qual é o tipo de movimento do carrinho quando a resultante das forças que atuam sobre ele passa a ser nula.
5. Explicar, com base no gráfico velocidade-tempo, se os efeitos do atrito são ou não desprezáveis.
6. Confrontar os resultados experimentais com os pontos de vista históricos de Aristóteles, de Galileu e de Newton.

AL 1.3. Movimento uniformemente retardado: velocidade e deslocamento

Objetivo geral: Relacionar a velocidade e o deslocamento num movimento uniformemente retardado e determinar a aceleração e a resultante das forças de atrito.

1. Justificar que o movimento do bloco que desliza sobre um plano horizontal, acabando por parar, é uniformemente retardado.
2. Obter a expressão que relaciona o quadrado da velocidade e o deslocamento de um corpo com movimento uniformemente variado a partir das equações da posição e da velocidade em função do tempo.
3. Concluir que num movimento uniformemente retardado, em que o corpo acaba por parar, o quadrado da velocidade é diretamente proporcional ao deslocamento, e interpretar o significado da constante de proporcionalidade.
4. Medir massas, comprimentos, tempos, distâncias e velocidades.
5. Construir o gráfico do quadrado da velocidade em função do deslocamento, determinar a equação da reta de regressão e calcular a aceleração do movimento.
Determinar a resultante das forças de atrito que atuam sobre o bloco a partir da Segunda Lei de Newton.

AL 2.1. Características do som

Objetivo geral: Investigar características de um som (frequência, intensidade, comprimento de onda, timbre) a partir da observação de sinais elétricos resultantes da conversão de sinais sonoros.

1. Identificar sons puros e sons complexos.
2. Comparar amplitudes e períodos de sinais sinusoidais.
3. Comparar intensidades e frequências de sinais sonoros a partir da análise de sinais elétricos.
4. Medir períodos e calcular frequências dos sinais sonoros, compará-los com valores de referência e avaliar a sua exatidão.
5. Identificar limites de audição no espetro sonoro.
6. Medir comprimentos de onda de sons.

AL 2.2. Velocidade de propagação do som

Objetivo geral: Determinar a velocidade de propagação de um sinal sonoro.

1. Medir a velocidade do som no ar (medida indireta).
2. Comparar o valor obtido para a velocidade do som com o tabelado, avaliar a exatidão do resultado e calcular o erro percentual.

AL 3.1. Ondas: absorção, reflexão, refração e reflexão total

Objetivo geral: Investigar os fenômenos de absorção, reflexão, refração e reflexão total, determinar o índice de refração de um meio em relação ao ar e prever o ângulo crítico.

1. Avaliar a capacidade refletora e a transparência de diversos materiais quando neles se faz incidir luz e a diminuição da intensidade do feixe ou a mudança da direção do feixe de luz.
2. Medir ângulos de incidência e de reflexão, relacionando-os.
3. Medir ângulos de incidência e de refração.
4. Construir o gráfico do seno do ângulo de refração em função do seno do ângulo de incidência, determinar a equação da reta de ajuste e, a partir do seu declive, calcular o índice de refração do meio em relação ao ar.
5. Prever qual é o ângulo crítico de reflexão total entre o meio e o ar e verificar o fenômeno da reflexão total para ângulos de incidência superiores ao ângulo crítico, observando o que acontece à luz enviada para o interior de uma fibra ótica.
6. Identificar a transparência e o elevado valor do índice de refração como propriedades da fibra ótica que guiam a luz no seu interior.
AL 3.2. Comprimento de onda e difração

Objetivo geral: Investigar o fenómeno da difração e determinar o comprimento de onda da luz de um laser.

1. Identificar o fenómeno da difração a partir da observação das variações de forma da zona iluminada de um alvo com luz de um laser, relacionando-as com a dimensão da fenda por onde passa a luz.

2. Concluir que os pontos luminosos observados resultam da difração e aparecem mais espaçados se se aumentar o número de fendas por unidade de comprimento.

3. Determinar o comprimento de onda da luz do laser.

4. Justificar o uso de redes de difração em espetroscopia, por exemplo na identificação de elementos químicos, com base na dispersão da luz policromática que elas originam.
Metas transversais

<table>
<thead>
<tr>
<th>Aprendizagens do tipo:</th>
<th>AL 1.1.</th>
<th>AL 1.2.</th>
<th>AL 1.3.</th>
<th>AL 2.1.</th>
<th>AL 2.2.</th>
<th>AL 3.1.</th>
<th>AL 3.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
11.º ano – Química

AL 1.1. Síntese do ácido acetilsalicílico

Objetivo geral: Realizar a síntese do ácido acetilsalicílico e determinar o rendimento.

1. Interpretar a síntese do ácido acetilsalicílico com base na equação química.
2. Interpretar e seguir um procedimento de síntese do ácido acetilsalicílico.
3. Interpretar informação de segurança nos rótulos de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas.
4. Medir um volume de um reagente líquido.
5. Filtrar por vácuo, lavar e secar os cristais obtidos.
6. Determinar o reagente limitante.
7. Calcular o rendimento da síntese e avaliar o resultado obtido.

AL 1.2. Efeito da concentração no equilíbrio químico

Objetivo geral: Investigar alterações de equilíbrios químicos em sistemas aquosos por variação da concentração de reagentes e produtos.

1. Interpretar e realizar procedimentos que, em pequena escala e controlando variáveis, permitam verificar o efeito da variação da concentração de reagentes e produtos na progressão global da reação.
2. Prever a progressão global de uma reação química com base no Princípio de Le Châtelier.
3. Interpretar o efeito da variação da concentração de reagentes e produtos na progressão global da reação por comparação do quociente da reação com a constante de equilíbrio.

AL 2.1. Constante de acidez

Objetivo geral: Determinar uma constante de acidez de um ácido fraco monoprótico por medição do pH de uma solução aquosa de concentração conhecida desse ácido.

1. Medir os valores de pH das soluções, para uma mesma temperatura.
2. Determinar o valor da constante de acidez a partir do pH e da concentração inicial de cada uma das soluções.
3. Comparar os valores obtidos da constante de acidez com valores tabelados e avaliar os resultados.

AL 2.2. Titulação ácido-base

Objetivo geral: Realizar uma titulação ácido-base para determinar a concentração de uma solução de um ácido (ou de uma base).

1. Descrever a titulação ácido-base como uma técnica analítica na qual se fazem reagir entre si soluções aquosas de ácidos e de bases e que permite determinar a composição quantitativa de uma dessas soluções.
2. Distinguir titulante de titulado.
3. Traçar a curva de titulação a partir de valores de pH medidos.
4. Determinar graficamente o valor de pH no ponto de equivalência e o volume de titulante gasto até ser atingido esse ponto.
5. Determinar a concentração da solução titulada.
AL 2.3. Série eletroquímica

Objetivo geral: Organizar uma série eletroquímica a partir de reações entre metais e soluções aquosas de sais contendo catiões de outros metais.

1. Interpretar e realizar procedimentos que, em pequena escala e controlando variáveis, permitam construir uma série eletroquímica.
2. Interpretar as reações de oxidação-redução que podem ocorrer e escrever as correspondentes equações químicas.
3. Comparar, a partir de resultados experimentais, o poder redutor de alguns metais e elaborar uma série eletroquímica.

AL 2.4. Efeito da temperatura na solubilidade de um soluto sólido em água

Objetivo geral: Investigar o efeito da temperatura na solubilidade de um soluto sólido em água.

1. Justificar procedimentos que permitam determinar a forma como a solubilidade de um soluto sólido em água varia com a temperatura.
2. Determinar a solubilidade de um soluto sólido a uma determinada temperatura com base nas medições efetuadas.
3. Traçar a curva de solubilidade.
<table>
<thead>
<tr>
<th>Aprendizagens do tipo:</th>
<th>AL 1.1</th>
<th>AL 1.2</th>
<th>AL 2.1</th>
<th>AL 2.2</th>
<th>AL 2.3</th>
<th>AL 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processual</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Conceptual</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>